Characterization of a tungsten-substituted nitrogenase isolated from Rhodobacter capsulatus
- PMID: 12667075
- DOI: 10.1021/bi0270790
Characterization of a tungsten-substituted nitrogenase isolated from Rhodobacter capsulatus
Abstract
In the phototrophic non-sulfur bacterium Rhodobacter capsulatus, the biosynthesis of the conventional Mo-nitrogenase is strictly Mo-regulated. Significant amounts of both dinitrogenase and dinitrogenase reductase were only formed when the growth medium was supplemented with molybdate (1 microM). During cell growth under Mo-deficient conditions, tungstate, at high concentrations (1 mM), was capable of partially (approximately 25%) substituting for molybdate in the induction of nitrogenase synthesis. On the basis of such conditions, a tungsten-substituted nitrogenase was isolated from R. capsulatus with the aid of anfA (Fe-only nitrogenase defective) mutant cells and partially purified by Q-sepharose chromatography. Metal analyses revealed the protein to contain an average of 1 W-, 16 Fe-, and less than 0.01 Mo atoms per alpha(2)beta(2)-tetramer. The tungsten-substituted (WFe) protein was inactive in reducing N(2) and marginally active in acetylene reduction, but it was found to show considerable activity with respect to the generation of H(2) from protons. The EPR spectrum of the WFe protein, recorded at 4 K, exhibited three distinct signals: (i) an S = 3/2 signal, which dominates the low-field region of the spectrum (g = 4.19, 3.93) and is indicative of a tungsten-substituted cofactor (termed FeWco), (ii) a marginal S = 3/2 signal (g = 4.29, 3.67) that can be attributed to residual amounts of FeMoco present in the protein, and (iii) a broad S = 1/2 signal (g = 2.09, 1.95, 1.86) arising from at least two paramagnetic species. Redox titrational analysis of the WFe protein revealed the midpoint potential of the FeWco (E(m) < -200 mV) to be shifted to distinctly lower potentials as compared to that of the FeMoco (E(m) approximately -50 mV) present in the native enzyme. The P clusters of both the WFe and the MoFe protein appear indistinguishable with respect to their midpoint potentials. EPR spectra recorded with the WFe protein under turnover conditions exhibited a 20% decrease in the intensity of the FeWco signal, indicating that the cofactor can be enzymatically reduced only to a small extent. The data presented in the current study demonstrate the pivotal role of molybdenum in optimal N(2) fixation and provides direct evidence that the inability of a tungsten-substituted nitrogenase to reduce N(2) is due to the difficulty to effectively reduce the FeW cofactor beyond its semi-reduced state.
Similar articles
-
Spectroscopic evidence for changes in the redox state of the nitrogenase P-cluster during turnover.Biochemistry. 1999 May 4;38(18):5779-85. doi: 10.1021/bi982866b. Biochemistry. 1999. PMID: 10231529
-
The Fe-only nitrogenase from Rhodobacter capsulatus: identification of the cofactor, an unusual, high-nuclearity iron-sulfur cluster, by Fe K-edge EXAFS and 57Fe Mössbauer spectroscopy.J Biol Inorg Chem. 2002 Jan;7(1-2):37-45. doi: 10.1007/s007750100263. Epub 2001 Jul 4. J Biol Inorg Chem. 2002. PMID: 11862539
-
Changes in the midpoint potentials of the nitrogenase metal centers as a result of iron protein-molybdenum-iron protein complex formation.Biochemistry. 1997 Oct 21;36(42):12976-83. doi: 10.1021/bi9715371. Biochemistry. 1997. PMID: 9335558
-
Regulation of nitrogen fixation in the phototrophic purple bacterium Rhodobacter capsulatus.J Mol Microbiol Biotechnol. 2002 May;4(3):243-8. J Mol Microbiol Biotechnol. 2002. PMID: 11931554 Review.
-
The vanadium-containing nitrogenase of Azotobacter.Biofactors. 1988 Jul;1(2):111-6. Biofactors. 1988. PMID: 3076437 Review.
Cited by
-
Multiple amino acid sequence alignment nitrogenase component 1: insights into phylogenetics and structure-function relationships.PLoS One. 2013 Sep 3;8(9):e72751. doi: 10.1371/journal.pone.0072751. eCollection 2013. PLoS One. 2013. PMID: 24019874 Free PMC article.
-
Protons and pleomorphs: aerobic hydrogen production in Azotobacters.World J Microbiol Biotechnol. 2016 Feb;32(2):29. doi: 10.1007/s11274-015-1980-5. Epub 2016 Jan 9. World J Microbiol Biotechnol. 2016. PMID: 26748806 Review.
-
Aerobic Hydrogen Production via Nitrogenase in Azotobacter vinelandii CA6.Appl Environ Microbiol. 2015 Jul;81(13):4507-16. doi: 10.1128/AEM.00679-15. Epub 2015 Apr 24. Appl Environ Microbiol. 2015. PMID: 25911479 Free PMC article.
-
Biosynthesis of Nitrogenase Cofactors.Chem Rev. 2020 Jun 24;120(12):4921-4968. doi: 10.1021/acs.chemrev.9b00489. Epub 2020 Jan 24. Chem Rev. 2020. PMID: 31975585 Free PMC article. Review.
-
Tungsten Toxicity in Plants.Plants (Basel). 2012 Nov 16;1(2):82-99. doi: 10.3390/plants1020082. Plants (Basel). 2012. PMID: 27137642 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources