Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Apr 8;42(13):3874-81.
doi: 10.1021/bi027029v.

Inhibition of serine proteinases plasmin, trypsin, subtilisin A, cathepsin G, and elastase by LEKTI: a kinetic analysis

Affiliations

Inhibition of serine proteinases plasmin, trypsin, subtilisin A, cathepsin G, and elastase by LEKTI: a kinetic analysis

Kenji Mitsudo et al. Biochemistry. .

Abstract

The human LEKTI gene encodes a putative 15-domain serine proteinase inhibitor and has been linked to the inherited disorder known as Netherton syndrome. In this study, human recombinant LEKTI (rLEKTI) was purified using a baculovirus/insect cell expression system, and the inhibitory profile of the full-length rLEKTI protein was examined. Expression of LEKTI in Sf9 cells showed the presence of disulfide bonds, suggesting the maintenance of the tertiary protein structure. rLEKTI inhibited the serine proteinases plasmin, subtilisin A, cathepsin G, human neutrophil elastase, and trypsin, but not chymotrypsin. Moreover, rLEKTI did not inhibit the cysteine proteinase papain or cathepsin K, L, or S. Further, rLEKTI inhibitory activity was inactivated by treatment with 20 mM DTT, suggesting that disulfide bonds are important to LEKTI function. The inhibition of plasmin, subtilisin A, cathepsin G, elastase, and trypsin by rLEKTI occurred through a noncompetitive-type mechanism, with inhibitory constants (K(i)) of 27 +/- 5, 49 +/- 3, 67 +/- 6, 317 +/-36, and 849 +/- 55 nM, respectively. Thus, LEKTI is likely to be a major physiological inhibitor of multiple serine proteinases.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources