Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 May;41(5):1080-5.
doi: 10.1161/01.HYP.0000066846.46422.2C. Epub 2003 Mar 31.

Deficiency of adrenomedullin induces insulin resistance by increasing oxidative stress

Affiliations

Deficiency of adrenomedullin induces insulin resistance by increasing oxidative stress

Tatsuo Shimosawa et al. Hypertension. 2003 May.

Abstract

Hypertension, insulin resistance, and obesity are common age-related metabolic disorders that are often associated with increased oxidative stress and the resultant vascular damage. Underlying mechanisms have been suggested, and age-related overproduction of oxidative stress is one possible candidate. Since we recently found a vasoactive peptide, adrenomedullin, to be an endogenous antioxidant that potently inhibits oxidative stress-induced vascular damage, in the current study we evaluated oxidative stress-induced changes in aged mice. Insulin sensitivities in young and aged adrenomedullin-deficient mice were measured by means of the hyperinsulinemic-euglycemic clamp method; insulin resistance was apparent in aged adrenomedullin-deficient mice with increased urinary excretion of 8-iso-prostaglandin F2alpha, a marker of oxidative stress, but not in young adrenomedullin-deficient mice. Concomitantly, only aged adrenomedullin-deficient mice not only showed increased production of muscular reactive oxygen species, as demonstrated by the electron spin resonance method, but also had significantly decreased insulin-stimulated glucose uptake into the soleus muscle associated with impairment of insulin signals such as insulin receptor substrate-1,2 and phosphatidylinositol-3 kinase activities. In turn, these abnormalities could be nearly reversed by either treatment with 4-hydroxy-2,2,6,6-tetramethyl-piperidine-N-oxyl, a membrane-permeable superoxide dismutase mimetic, or adrenomedullin supplementation. Evidence presented in this report suggests that age-related accumulation of oxidative stress is involved in blood pressure regulation and insulin resistance in aged adrenomedullin-deficient mice, and adrenomedullin is thus an endogenous substance counteracting oxidative stress-induced insulin resistance associated with aging.

PubMed Disclaimer

MeSH terms

LinkOut - more resources