Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Feb-Mar;20(1-2):67-74.
doi: 10.1385/ENDO:20:1-2:67.

Functional expression of the dopamine-activated K(+) current in lactotrophs during the estrous cycle in female rats: correlation with prolactin secretory responses

Affiliations

Functional expression of the dopamine-activated K(+) current in lactotrophs during the estrous cycle in female rats: correlation with prolactin secretory responses

Karen A Gregerson. Endocrine. 2003 Feb-Mar.

Abstract

It is well established that hypothalamic dopamine (DA) is the major physiologic regulator of prolactin (PRL) secretion, exerting a tonic inhibition throughout most of the estrous cycle. A dramatic drop in the amount of DA perfusing the anterior pituitary occurs in the afternoon of proestrus and is critical for the production of the surge of PRL that occurs at that time. In my laboratory, we have identified and characterized a DA-activated K(+) channel (K(DA)) in lactotrophs derived from proestrous rats that underlies DA-induced membrane hyperpolarization of lactotrophs. We have also demonstrated that this hyperpolarization plays a critical role in both the inhibition of PRL release from proestrous cells and the PRL secretory rebound that occurs following DA withdrawal. We now report that the ability of DA to activate the K(DA) channel and elicit hyperpolarization in primary lactotrophs changes dramatically during the estrous cycle. Lactotrophs isolated from cycling female rats were studied using whole-cell voltage clamp. DA (1 microM) elicited a robust membrane K(+) current in the majority of proestrous lactotrophs (86%; 24.0 +/- 2.9 pA). By contrast, DA activated a considerably smaller membrane current (3.3 pA) in very few lactotrophs isolated from rats on either diestrus or estrus (8 and 0%, respectively). Using a perifusion system to examine temporal patterns of PRL release, we found that following application and withdrawal of DA, proestrous cells produced a robust secretory rebound, but diestrous and estrous cells did not. However, DA inhibited PRL release to the same extent regardless the stage of the cycle from which the cells were derived. These data are consistent with the presence of multiple DA effectors in lactotrophs and demonstrate that their relative importance shifts dramatically with changes in the endocrine status of the animal. We propose that the DA-activated K(+) channel (K(DA)) is a critical effector governing the unique secretory profile of PRL observed in proestrous animals.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Pflugers Arch. 1981 Aug;391(2):85-100 - PubMed
    1. Brain Res. 2000 Oct 6;879(1-2):139-47 - PubMed
    1. J Biol Chem. 1978 Apr 10;253(7):2244-53 - PubMed
    1. Endocrinology. 1986 Apr;118(4):1271-7 - PubMed
    1. Mol Pharmacol. 1983 May;23(3):576-84 - PubMed

Publication types

LinkOut - more resources