Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Mar 27;37(6):963-75.
doi: 10.1016/s0896-6273(03)00125-9.

PIP(2) activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents

Affiliations
Free article

PIP(2) activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents

Hailin Zhang et al. Neuron. .
Free article

Abstract

KCNQ channels belong to a family of potassium ion channels with crucial roles in physiology and disease. Heteromers of KCNQ2/3 subunits constitute the neuronal M channels. Inhibition of M currents, by pathways that stimulate phospholipase C activity, controls excitability throughout the nervous system. Here we show that a common feature of all KCNQ channels is their activation by the signaling membrane phospholipid phosphatidylinositol-bis-phosphate (PIP(2)). We show that wortmannin, at concentrations that prevent recovery from receptor-mediated inhibition of M currents, blocks PIP(2) replenishment to the cell surface. Moreover, we identify a C-terminal histidine residue, immediately proximal to the plasma membrane, mutation of which renders M channels less sensitive to PIP(2) and more sensitive to receptor-mediated inhibition. Finally, native or recombinant channels inhibited by muscarinic agonists can be activated by PIP(2). Our data strongly suggest that PIP(2) acts as a membrane-diffusible second messenger to regulate directly the activity of KCNQ currents.

PubMed Disclaimer

Publication types

MeSH terms