Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2003 Jun;44(6):1192-8.
doi: 10.1194/jlr.M300011-JLR200. Epub 2003 Apr 1.

Effect of atorvastatin on postprandial lipoprotein metabolism in hypertriglyceridemic patients

Affiliations
Free article
Clinical Trial

Effect of atorvastatin on postprandial lipoprotein metabolism in hypertriglyceridemic patients

Klaus G Parhofer et al. J Lipid Res. 2003 Jun.
Free article

Abstract

Postprandial lipoprotein metabolism is impaired in hypertriglyceridemia. It is unknown how and to what extent atorvastatin affects postprandial lipoprotein metabolism in hypertriglyceridemic patients. We evaluated the effect of 4 weeks of atorvastatin therapy (10 mg/day) on postprandial lipoprotein metabolism in 10 hypertriglyceridemic patients (age, 40 +/- 3 years; body mass index, 27 +/- 1 kg/m2; cholesterol, 5.74 +/- 0.34 mmol/l; triglycerides, 3.90 +/- 0.66 mmol/l; HDL-cholesterol, 0.85 +/- 0.05 mmol/l; and LDL-cholesterol, 3.18 +/- 0.23 mmol/l). Patients were randomized to be studied with or without atorvastatin therapy. Postprandial lipoprotein metabolism was evaluated with a standardized oral fat load. Plasma was obtained every 2 h for 14 h. Large triglyceride-rich lipoproteins (TRLs) (containing chylomicrons) and small TRLs (containing chylomicron remnants) were isolated by ultracentrifugation, and cholesterol, triglyceride, apolipoprotein B-100 (apoB-100), apoB-48, apoC-III, and retinyl-palmitate concentrations were determined. Atorvastatin significantly (P < 0.01) decreased fasting cholesterol (-27%), triglycerides (-43%), LDL-cholesterol (-28%), and apoB-100 (-31%), and increased HDL-cholesterol (+19%). Incremental area under the curve (AUC) significantly (P < 0.05) decreased for large TRL-cholesterol, -triglycerides, and -retinyl-palmitate, while none of the small TRL parameters changed. These findings contrast with the results in normolipidemic subjects, in which atorvastatin decreased the AUC for chylomicron remnants (small TRLs) but not for chylomicrons (large TRLs). We conclude that atorvastatin improves postprandial lipoprotein metabolism in addition to decreasing fasting lipid levels in hypertriglyceridemia. Such changes would be expected to improve the atherogenic profile.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources