Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jul;13(7):521-7.
doi: 10.1093/glycob/cwg065. Epub 2003 Apr 2.

Aberrant O-glycosylation inhibits stable expression of dysadherin, a carcinoma-associated antigen, and facilitates cell-cell adhesion

Affiliations

Aberrant O-glycosylation inhibits stable expression of dysadherin, a carcinoma-associated antigen, and facilitates cell-cell adhesion

Hitomi Tsuiji et al. Glycobiology. 2003 Jul.

Abstract

Recently, we identified dysadherin, a novel carcinoma-associated glycoprotein, and showed that overexpression of dysadherin in human hepatocarcinoma PLC/PRF/5 cells could suppress E-cadherin-mediated cell-cell adhesion and promote tumor metastasis. The present study shows evidence that dysadherin is actually O-glycosylated. This was based on a direct carbohydrate composition analysis of a chimera protein of an extracellular domain of dysadherin fused to an Fc fragment of immunoglobulin. To assess the importance of O-glycosylation in dysadherin function, dysadherin-transfected hepatocarcinoma cells were cultured in a medium containing benzyl-alpha-GalNAc, a modulator of O-glycosylation. This treatment facilitated homotypic cell adhesion among dysadherin transfectants accompanied with morphological changes, indicating that the anti-adhesive effect of dysadherin was weakened. Modification of O-glycan synthesis also resulted in down-regulation of dysadherin expression and up-regulation of E-cadherin expression in dysadherin transfectants but did not affect E-cadherin expression in mock transfectants. Structural analysis of O-glycans released from the dysadherin chimera proteins indicated that a series of O-glycans with core 1 and 2 structures are attached to dysadherin, and their sialylation is remarkably inhibited by benzyl-alpha-GalNAc treatment. However, sialidase treatment of the cells did not affect calcium-dependent cell aggregation, which excluded the possibility that sialic acid itself is directly involved in cell-cell adhesion. We suggest that aberrant O-glycosylation in carcinoma cells inhibits stable expression of dysadherin and leads to the up-regulation of E-cadherin expression by an unknown mechanism, resulting in increased cell-cell adhesion. The carbohydrate-directed approach to the regulation of dysadherin expression might be a new strategy for cancer therapy.

PubMed Disclaimer

Publication types

MeSH terms