Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Apr;133(4):1174-9.
doi: 10.1093/jn/133.4.1174.

Neonatal iron deficiency results in irreversible changes in dopamine function in rats

Affiliations

Neonatal iron deficiency results in irreversible changes in dopamine function in rats

John Beard et al. J Nutr. 2003 Apr.

Abstract

Iron deficiency in human infants and in young animal models produces changes in neural functioning that may be related to monoamine metabolism. This study employed both behavioral and biochemical approaches in a design using cross-fostering to examine alterations in dopamine (DA) function when iron deficiency occurs during the neonatal period. We measured brain Fe, dopamine transporters (DAT) and dopamine receptor density in rats made iron deficient, or not, from postnatal day (PND) 4 to PND 14 or 21. Some pups were then weaned to an iron-deficient diet and others to the control diet to examine the reversibility of these effects. Behaviors related to dopamine function were measured. Dopamine D(2) receptor (D(2)R), D(1)R and iron concentrations were approximately 70, 80 and 30% of control values, respectively, in the nucleus accumbens and striatum in iron-deficient rats at PND 14. The DAT density was also reduced to 50% of control density in the nucleus accumbens but was unchanged in the striatum. By PND 21, there was also a significant 50% lowering of DAT, D(1)R and D(2)R densities in the prefrontal cortex (PFC). Iron repletion at PND 21-49 normalized D(1)R, D(2)R, and DAT levels in the nucleus accumbens, PFC and ventral midbrain but not in the striatum. In summary, neonatal iron deficiency is associated with changes in DA biology that vary with duration of iron deficiency, and are not completely normalized despite replenishment of iron status. Changes in DA-related behaviors that were persistent after postweaning iron repletion suggest the existence of a critical neonatal developmental period that is expressed by alterations in DA functioning.

PubMed Disclaimer

LinkOut - more resources