Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002;48(6):309-15.
doi: 10.1159/000069714.

Inhibition of nitric oxide synthase aggravates cisplatin-induced nephrotoxicity: effect of 2-amino-4-methylpyridine

Affiliations

Inhibition of nitric oxide synthase aggravates cisplatin-induced nephrotoxicity: effect of 2-amino-4-methylpyridine

Sherif Y Saad et al. Chemotherapy. 2002.

Abstract

Background: Nitric oxide (NO) has been shown to play a role in maintaining normal renal function. However, the role of NO in cisplatin (CDDP)-induced nephrotoxicity is still unclear. The aim of the present work was to examine the effect of the NO synthase (NOS) inhibitor, 2-amino-4-methylpyridine, on the severity of CDDP-induced nephrotoxicity.

Methods: Male Wistar rats were divided into six groups. Three control groups received plain drinking water or water containing 1.5% L-arginine. One of the two groups receiving plain water was treated with an intraperitoneal injection of 2-amino-4-methylpyridine (1 mg/kg in normal saline), and the other two control groups were injected intraperitoneally with normal saline. Another three groups were treated in the same manner and injected with CDDP (6 mg/kg, i.p.). CDDP was injected 1 h after 2-amino-4-methylpyridine treatment. Rats were sacrificed 7 days after CDDP treatment, and serum as well as kidneys were isolated and analysed.

Results: CDDP-treated rats showed increases in the kidney weight as a percentage of the total body weight and serum creatinine and urea levels and decreases in serum albumin and calcium levels. Also, CDDP treatment induced reductions in the kidney total nitrate/nitrite (NO(x)), reduced glutathione (GSH) and glutathione peroxidase activity (GSH-Px) levels and an increase in the kidney malondialdehyde (MDA) production level. In contrast, 2-amino-4-methylpyridine treatment 1 h prior to CDDP injection induced marked exacerbation of CDDP-induced nephrotoxicity, as manifested by severe aggravation of the indices of nephrotoxicity. Also, 2-amino-4-methylpyridine plus CDDP-treated rats showed exaggeration of the reduction in the kidney total NO(x) content and GSH-Px activity and elevation of the kidney platinum accumulation level with normalization of the kidney MDA production level and rebound in the kidney GSH content. Histopathologically, CDDP-treated rats showed marked interstitial nephritis, tubular atrophy and tubular necrosis. However, treatment with 2-amino-4-methylpyridine 1 h prior to CDDP injection revealed marked exacerbation of CDDP-induced histopathological changes.

Conclusions: The present findings suggest that NO plays a role in CDDP-induced nephrotoxicity. Administration of 2-amino-4-methylpyridine, an NOS inhibitor, exacerbates CDDP-induced nephrotoxicity.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources