Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Mar;121(3):153-62.
doi: 10.1254/fpj.121.153.

[Rho-mediated signal transduction and its physiological roles]

[Article in Japanese]
Affiliations
Review

[Rho-mediated signal transduction and its physiological roles]

[Article in Japanese]
Toshimasa Ishizaki. Nihon Yakurigaku Zasshi. 2003 Mar.

Abstract

Rho is a member of the Ras-related family of small molecular weight GTP-binding proteins, and Rho works as a molecular switch by shuttling between the GDP-bound inactive form and the GTP-bound active form. Rho is involved in cell motility, cell adhesion, and cytokinesis through the reorganization of the actin cytoskeleton. In addition to this, Rho also regulates Ras-induced transformation, transcriptional activation and cell cycle progression. These actions through the Rho signaling are mediated by downstream Rho effectors. Several putative Rho effectors including ROCK and mDia have been isolated on the basis of their selective binding to the GTP-bound form of Rho. Among them, the ROCK family of Rho-associated serine/threonine protein kinases inactivates myosin phosphatase and actin depolymerizing factor (cofilin/Destrin) to induce stabilization of filamentous actin and increase in the actomyosin-based contractility. mDia binds profilin likely to promote actin polymerization. Thus, these effectors are supposed to work in organization of the actin cytoskeleton. Furthermore, analyses using a ROCK specific inhibitor Y-27632 have suggested that the Rho-ROCK pathway works in contractions of vascular smooth muscles and is involved in malignant cell transformation and tumor invasion and metastasis.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms