Metabolism of fructooligosaccharides by Lactobacillus paracasei 1195
- PMID: 12676703
- PMCID: PMC154817
- DOI: 10.1128/AEM.69.4.2217-2222.2003
Metabolism of fructooligosaccharides by Lactobacillus paracasei 1195
Abstract
Fermentation of fructooligosaccharides (FOS) and other oligosaccharides has been suggested to be an important property for the selection of bacterial strains used as probiotics. However, little information is available on FOS transport and metabolism by lactic acid bacteria and other probiotic bacteria. The objectives of this research were to identify and characterize the FOS transport system of Lactobacillus paracasei 1195. Radiolabeled FOS was synthesized enzymatically from [(3)H]sucrose and purified by column and thin-layer chromatography, yielding three main products: glucose (G) alpha-1,2 linked to two, three, or four fructose (F) units (GF(2), GF(3), and GF(4), respectively). FOS hydrolysis activity was detected only in cell extracts prepared from FOS- or sucrose-grown cells and was absent in cell supernatants, indicating that transport must precede hydrolysis. FOS transport assays revealed that the uptake of GF(2) and GF(3) was rapid, whereas little GF(4) uptake occurred. Competition experiments showed that glucose, fructose, and sucrose reduced FOS uptake but that other mono-, di-, and trisaccharides were less inhibitory. When cells were treated with sodium fluoride, iodoacetic acid, or other metabolic inhibitors, FOS transport rates were reduced by up to 60%; however, ionophores that abolished the proton motive force only slightly decreased FOS transport. In contrast, uptake was inhibited by ortho-vanadate, an inhibitor of ATP-binding cassette transport systems. De-energized cells had low intracellular ATP concentrations and had a reduced capacity to accumulate FOS. These results suggest that FOS transport in L. paracasei 1195 is mediated by an ATP-dependent transport system having specificity for a narrow range of substrates.
Figures
References
-
- Bird, A. R., I. L. Brown, and D. L. Topping. 2000. Starches, resistant starches, the gut microflora and human health. Curr. Issues Intest. Microbiol. 1:25-37. - PubMed
-
- Bouhnik, Y., B. Flourie, L. D'Agay-Abensour, P. Pochart, G. Gramet, M. Durand, and J. C. Rambaud. 1997. Administration of transgalacto-oligosaccharides increases fecal bifidobacteria and modifies colonic fermentation metabolism in healthy humans. J. Nutr. 127:444-448. - PubMed
-
- Bouhnik, Y., K. Vahedi, L. Achour, A. Attar, J. Salfati, P. Pochart, P. Marteau, B. Flourie, F. Bornet, and J. C. Rambaud. 1999. Short-chain fructo-oligosaccharide administration dose-dependently increases fecal bifidobacteria in healthy humans. J. Nutr. 129:113-116. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
