Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2003 Jul;95(1):113-20.
doi: 10.1152/japplphysiol.00956.2002. Epub 2003 Apr 4.

Relationship between pulmonary O2 uptake kinetics and muscle deoxygenation during moderate-intensity exercise

Affiliations
Free article
Clinical Trial

Relationship between pulmonary O2 uptake kinetics and muscle deoxygenation during moderate-intensity exercise

Darren S DeLorey et al. J Appl Physiol (1985). 2003 Jul.
Free article

Abstract

The temporal relationship between the kinetics of phase 2 pulmonary O2 uptake (Vo -->Vo2p) and deoxygenation of the vastus lateralis muscle was examined during moderate-intensity leg-cycling exercise. Young adults (5 men, 6 women; 23 +/- 3 yr; mean +/- SD) performed repeated transitions on 3 separate days from 20 W to a constant work rate corresponding to 80% of lactate threshold. Breath-by-breath Vo2p was measured by mass spectrometer and volume turbine. Deoxyhemoglobin (HHb), oxyhemoglobin, and total hemoglobin and myoglobin were sampled each second by near-infrared spectroscopy (Hamamatsu NIRO-300). Vo2p data were filtered, interpolated to 1 s, and averaged to 5-s bins; HHb data were averaged to 5-s bins. Phase 2 Vo2p data were fit with a monoexponential model. For HHb, a time delay (TDHHb) from exercise onset to an increase in HHb was determined, and thereafter data were fit with a monoexponential model. The time constant for Vo2p (30 +/- 8 s) was slower (P < 0.01) than that for HHb (10 +/- 3 s). The TDHHb before an increase in HHb was 13 +/- 2 s. The possible mechanisms of the TDHHb are discussed with reference to metabolic activation and matching of local muscle O2 delivery and O2 utilization. After this initial TDHHb, the kinetics of local muscle deoxygenation were faster than those of phase 2 Vo2p (and presumably muscle O2 consumption), reflecting increased O2 extraction and a mismatch between local muscle O2 consumption and perfusion.

PubMed Disclaimer

Publication types