Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Apr 15;42(14):4235-42.
doi: 10.1021/bi027370f.

Reversible inactivation of alpha-ketoglutarate dehydrogenase in response to alterations in the mitochondrial glutathione status

Affiliations

Reversible inactivation of alpha-ketoglutarate dehydrogenase in response to alterations in the mitochondrial glutathione status

Amy C Nulton-Persson et al. Biochemistry. .

Abstract

In a previous study, we found that treatment of rat heart mitochondria with H(2)O(2) resulted in a decline and subsequent recovery in the rate of state 3 NADH-linked respiration. These effects were shown to be mediated by reversible alterations in NAD(P)H utilization and in the activities of specific Krebs cycle enzymes alpha-ketoglutarate dehydrogenase (KGDH) and succinate dehydrogenase. The purpose of the current study was to examine potential mechanism(s) by which H(2)O(2) reversibly alters KGDH activity. We report here that inactivation is not simply due to direct interaction of H(2)O(2) with KGDH. In addition, incubation of mitochondria with deferroxamine, an iron chelator, or 1,3-dimethyl-2-thiourea, an oxygen radical scavenger, prior to addition of H(2)O(2) did not alter the rate or extent of inactivation. Thus, inactivation does not appear to involve a more potent oxygen radical formed upon metal-catalyzed oxidation. Inactive KGDH from H(2)O(2)-treated mitochondria was reactivated with dithiothreitol, implicating oxidation of a protein sulfhydryl(s). However, the thioredoxin system had no effect, indicating that enzyme inactivation is not due to the formation of intra- or intermolecular disulfide(s) or a sulfenic acid. Upon incubation of mitochondria with H(2)O(2), reduced GSH levels fell rapidly prior to enzyme inactivation but recovered at the same time as enzyme activity. Importantly, treatment of inactive KGDH with glutaredoxin facilitated the GSH-dependent recovery of KGDH activity. Glutaredoxin is characterized as a specific and efficient catalyst of protein deglutathionylation. Thus, the results of the current study indicate that KGDH activity appears to be modulated through enzymatic glutathionylation and deglutathionylation. These studies demonstrate a novel mechanism by which KGDH activity and mitochondrial function can be modulated by redox status.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources