Light-induced glutamate transport in Halobacterium halobium envelope vesicles. I. Kinetics of the light-dependent and the sodium-gradient-dependent uptake
- PMID: 1268186
- DOI: 10.1021/bi00653a001
Light-induced glutamate transport in Halobacterium halobium envelope vesicles. I. Kinetics of the light-dependent and the sodium-gradient-dependent uptake
Abstract
During illumination Halobacterium halobium cell envelope vesicles accumulate [3H]glutamate by an apparently unidirectional transport system. The driving force for the active transport originates from the light-dependent translocation of protons by bacteriorhodopsin and is due to a transmembrane electrical potential rather than a pH difference. Transport of glutamate against high concentration gradients is also achieved in the dark, with high outside/inside Na+ gradients. Transport in both cases proceeds with similar kinetics and shows a requirement for Na+ on the outside and for K+ on the inside of the vesicles. The unidirectional nature of glutamate transport seems to be due to the low permeability of the membranes to the anionic glutamate, and to the differential cation requirement of the carrier on the two sides of the membrane for substrate translocation. Thus, glutamate gradients can be collapsed in the dark either by lowering the intravesicle pH (with nigericin, or carbonyl cyanide p-trifluoromethoxyphenylhydrazone plus valinomycin), or by reversing the cation balance across the membranes, i.e., providing NaCl on the inside and KCl on the outside of the vesicles. In contrast to the case of light-dependent glutamate transport, the initial rates of Na+-gradient-dependent transport are not depressed when an opposing diffusion potential is introduced by adding the membrane-permeant cation, triphenylmethylphosphonium bromide. Therefore, it appears that, although the electrical potential must be the primary source of energy for the light-dependent transport, the translocation step itself is electrically neutral.
Similar articles
-
Light energy conversion in Halobacterium halobium.Microbiol Rev. 1978 Dec;42(4):682-706. doi: 10.1128/mr.42.4.682-706.1978. Microbiol Rev. 1978. PMID: 368557 Free PMC article. Review. No abstract available.
-
Light-induced glutamate transport in Halobacterium halobium envelope vesicles. II. Evidence that the driving force is a light-dependent sodium gradient.Biochemistry. 1976 Apr 20;15(8):1603-10. doi: 10.1021/bi00653a002. Biochemistry. 1976. PMID: 5106
-
Light-induced leucine transport in Halobacterium halobium envelope vesicles: a chemiosmotic system.Biochemistry. 1975 Jul;14(13):2882-9. doi: 10.1021/bi00684a014. Biochemistry. 1975. PMID: 50859
-
Light-dependent cation gradients and electrical potential in Halobacterium halobium cell envelope vesicles.Fed Proc. 1977 May;36(6):1824-7. Fed Proc. 1977. PMID: 15877
-
Light-activated amino acid transport in Halobacterium halobium envelope vesicles.Fed Proc. 1977 May;36(6):1828-32. Fed Proc. 1977. PMID: 15878 Review.
Cited by
-
Na-Stimulated Transport of l-Methionine in Brevibacterium linens CNRZ 918.Appl Environ Microbiol. 1987 Sep;53(9):2159-64. doi: 10.1128/aem.53.9.2159-2164.1987. Appl Environ Microbiol. 1987. PMID: 16347437 Free PMC article.
-
Proton motive force generated by microbial rhodopsin promotes extracellular electron transfer.Synth Syst Biotechnol. 2025 Jan 7;10(2):410-420. doi: 10.1016/j.synbio.2025.01.001. eCollection 2025 Jun. Synth Syst Biotechnol. 2025. PMID: 39898011 Free PMC article.
-
Light-induced, carrier-mediated transport of tetracycline by Rhodopseudomonas sphaeroides.J Bacteriol. 1979 Jun;138(3):678-83. doi: 10.1128/jb.138.3.678-683.1979. J Bacteriol. 1979. PMID: 37230 Free PMC article.
-
Light energy conversion in Halobacterium halobium.Microbiol Rev. 1978 Dec;42(4):682-706. doi: 10.1128/mr.42.4.682-706.1978. Microbiol Rev. 1978. PMID: 368557 Free PMC article. Review. No abstract available.
-
Energy coupling in the active transport of proline and glutamate by the photosynthetic halophile Ectothiorhodospira halophila.J Bacteriol. 1976 Sep;127(3):1255-64. doi: 10.1128/jb.127.3.1255-1264.1976. J Bacteriol. 1976. PMID: 956126 Free PMC article.