Diversification and spectral tuning in marine proteorhodopsins
- PMID: 12682005
- PMCID: PMC154475
- DOI: 10.1093/emboj/cdg183
Diversification and spectral tuning in marine proteorhodopsins
Abstract
Proteorhodopsins, ubiquitous retinylidene photoactive proton pumps, were recently discovered in the cosmopolitan uncultured SAR86 bacterial group in oceanic surface waters. Two related proteorhodopsin families were found that absorb light with different absorption maxima, 525 nm (green) and 490 nm (blue), and their distribution was shown to be stratified with depth. Using structural modeling comparisons and mutagenesis, we report here on a single amino acid residue at position 105 that functions as a spectral tuning switch and accounts for most of the spectral difference between the two pigment families. Furthermore, looking at natural environments, we found novel proteorhodopsin gene clusters spanning the range of 540-505 nm and containing changes in the same identified key switch residue leading to changes in their absorption maxima. The results suggest a simultaneous diversification of green proteorhodopsin and the new key switch variant pigments. Our observations demonstrate that this single-residue switch mechanism is the major determinant of proteorhodopsin wavelength regulation in natural marine environments.
Figures





Similar articles
-
Novel Proteorhodopsin variants from the Mediterranean and Red Seas.Environ Microbiol. 2003 Oct;5(10):842-9. doi: 10.1046/j.1462-2920.2003.00493.x. Environ Microbiol. 2003. PMID: 14510837
-
Spectroscopic and photochemical characterization of a deep ocean proteorhodopsin.J Biol Chem. 2003 Sep 5;278(36):33985-91. doi: 10.1074/jbc.M305716200. Epub 2003 Jun 23. J Biol Chem. 2003. PMID: 12821661
-
Proteorhodopsin in living color: diversity of spectral properties within living bacterial cells.Biochim Biophys Acta. 2003 Dec 3;1618(1):25-32. doi: 10.1016/j.bbamem.2003.10.002. Biochim Biophys Acta. 2003. PMID: 14643930
-
Light-driven ion-translocating rhodopsins in marine bacteria.Trends Microbiol. 2015 Feb;23(2):91-8. doi: 10.1016/j.tim.2014.10.009. Trends Microbiol. 2015. PMID: 25432080 Review.
-
Marine Bacterial and Archaeal Ion-Pumping Rhodopsins: Genetic Diversity, Physiology, and Ecology.Microbiol Mol Biol Rev. 2016 Sep 14;80(4):929-54. doi: 10.1128/MMBR.00003-16. Print 2016 Dec. Microbiol Mol Biol Rev. 2016. PMID: 27630250 Free PMC article. Review.
Cited by
-
Summer Abundance and Distribution of Proteorhodopsin Genes in the Western Arctic Ocean.Front Microbiol. 2016 Oct 13;7:1584. doi: 10.3389/fmicb.2016.01584. eCollection 2016. Front Microbiol. 2016. PMID: 27790192 Free PMC article.
-
Optogenetic control of cell function using engineered photoreceptors.Biol Cell. 2013 Feb;105(2):59-72. doi: 10.1111/boc.201200056. Epub 2012 Dec 21. Biol Cell. 2013. PMID: 23157573 Free PMC article. Review.
-
His-75 in proteorhodopsin, a novel component in light-driven proton translocation by primary pumps.J Biol Chem. 2009 Jan 30;284(5):2836-2843. doi: 10.1074/jbc.M803792200. Epub 2008 Nov 17. J Biol Chem. 2009. PMID: 19015272 Free PMC article.
-
Effects of the Unique Chromophore-Protein Interactions on the Primary Photoreaction of Schizorhodopsin.J Phys Chem Lett. 2023 Aug 10;14(31):7083-7091. doi: 10.1021/acs.jpclett.3c01133. Epub 2023 Aug 1. J Phys Chem Lett. 2023. PMID: 37527812 Free PMC article.
-
Accurate Prediction of Absorption Spectral Shifts of Proteorhodopsin Using a Fragment-Based Quantum Mechanical Method.Molecules. 2021 Jul 25;26(15):4486. doi: 10.3390/molecules26154486. Molecules. 2021. PMID: 34361639 Free PMC article.
References
-
- Béjà O. et al. (2000a) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science, 289, 1902–1906. - PubMed
-
- Béjà O. et al. (2000b) Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ. Microbiol., 2, 516–529. - PubMed
-
- Béjà O., Spudich,E.N., Spudich,J.L., Leclerc,M. and DeLong,E.F. (2001) Proteorhodopsin phototrophy in the ocean. Nature, 411, 786–789. - PubMed
-
- Bieszke J.A., Spudich,E.N., Scott,K.L., Borkovich,K.A. and Spudich,J.L. (1999) A eukaryotic protein, NOP-1, binds retinal to form an archaeal rhodopsin-like photochemically reactive pigment. Biochemistry, 38, 14138–14145. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources