Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Mar;67(3 Pt 1):031403.
doi: 10.1103/PhysRevE.67.031403. Epub 2003 Mar 21.

Structure of random monodisperse foam

Affiliations

Structure of random monodisperse foam

Andrew M Kraynik et al. Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar.

Abstract

The Surface Evolver was used to calculate the equilibrium microstructure of random monodisperse soap froth, starting from Voronoi partitions of randomly packed spheres. The sphere packing has a strong influence on foam properties, such as E (surface free energy) and <f> (average number of faces per cell). This means that random foams composed of equal-volume cells come in a range of structures with different topological and geometric properties. Annealing-subjecting relaxed foams to large-deformation, tension-compression cycles-provokes topological transitions that can further reduce E and <f>. All of the foams have <f><or=14. The topological statistics and census of cell types for fully annealed foams are in excellent agreement with experiments by Matzke. Geometric properties related to surface area, edge length, and stress are evaluated for the foams and their individual cells. Simple models based on regular polygons predict trends for the edge length of individual cells and the area of individual faces. Graphs of surface area vs shape anisotropy for the cells reflect the geometrical frustration in random monodisperse foam, which is epitomized by pentagonal dodecahedra: they have low surface area but do not pack to fill space.

PubMed Disclaimer