Aquatic ecotoxicology of fluoxetine
- PMID: 12691711
- DOI: 10.1016/s0378-4274(03)00066-3
Aquatic ecotoxicology of fluoxetine
Abstract
Recent studies indicate that the pharmaceutical fluoxetine, a selective serotonin reuptake inhibitor, is discharged in municipal wastewater treatment plant effluents to surface waters. Few data on environmental fluoxetine exposure and hazard to aquatic life are currently available in the literature. Here, we summarize information on fluoxetine detection in surface waters and review research on single-species toxicity test, Japanese medaka (Oryzias latipes) reproduction and endocrine function, and freshwater mesocosm community responses to fluoxetine exposure. Based on results from our studies and calculations of expected introduction concentrations, we also provide a preliminary aquatic risk characterization for fluoxetine. If standard toxicity test responses and a hazard quotient risk characterization approach are solely considered, little risk of fluoxetine exposure may be expected to aquatic life. However, our findings indicate that: (1) the magnitude, duration and frequency of fluoxetine exposure in aquatic systems requires further investigation; (2) mechanistic toxicity of fluoxetine in non-target biota, including behavioral responses, are clearly not understood; and (3) an assessment of environmentally relevant fluoxetine concentrations is needed to characterize ecological community responses.
Similar articles
-
Reproductive assessment of Japanese medaka (Oryzias latipes) following a four-week fluoxetine (SSRI) exposure.Arch Environ Contam Toxicol. 2004 May;46(4):511-7. doi: 10.1007/s00244-003-3042-5. Arch Environ Contam Toxicol. 2004. PMID: 15253049
-
Acute and chronic toxicity of five selective serotonin reuptake inhibitors in Ceriodaphnia dubia.Environ Toxicol Chem. 2004 Sep;23(9):2229-33. doi: 10.1897/03-278. Environ Toxicol Chem. 2004. PMID: 15379001
-
Acute and chronic toxicity of fluoxetine (selective serotonin reuptake inhibitor) in western mosquitofish.Arch Environ Contam Toxicol. 2008 Feb;54(2):325-30. doi: 10.1007/s00244-007-9018-0. Epub 2007 Aug 31. Arch Environ Contam Toxicol. 2008. PMID: 17763886
-
Effects of fluoxetine on fish: What do we know and where should we focus our efforts in the future?Sci Total Environ. 2023 Jan 20;857(Pt 2):159486. doi: 10.1016/j.scitotenv.2022.159486. Epub 2022 Oct 17. Sci Total Environ. 2023. PMID: 36257440 Review.
-
Pharmaceuticals as neuroendocrine disruptors: lessons learned from fish on Prozac.J Toxicol Environ Health B Crit Rev. 2011;14(5-7):387-412. doi: 10.1080/10937404.2011.578559. J Toxicol Environ Health B Crit Rev. 2011. PMID: 21790318 Review.
Cited by
-
Effects of the antidepressant fluoxetine on pigment dispersion in chromatophores of the common sand shrimp, Crangon crangon: repeated experiments paint an inconclusive picture.Ecotoxicology. 2020 Nov;29(9):1368-1376. doi: 10.1007/s10646-020-02272-7. Epub 2020 Aug 28. Ecotoxicology. 2020. PMID: 32857222 Free PMC article.
-
Sensitivities of seven algal species to triclosan, fluoxetine and their mixtures.Sci Rep. 2018 Oct 18;8(1):15361. doi: 10.1038/s41598-018-33785-1. Sci Rep. 2018. PMID: 30337662 Free PMC article.
-
Urbanization, environment and pharmaceuticals: advancing comparative physiology, pharmacology and toxicology.Conserv Physiol. 2018 Jan 17;6(1):cox079. doi: 10.1093/conphys/cox079. eCollection 2018. Conserv Physiol. 2018. PMID: 30364343 Free PMC article.
-
How cyclophosphamide at environmentally relevant concentration influences Daphnia magna life history and its proteome.PLoS One. 2018 Apr 5;13(4):e0195366. doi: 10.1371/journal.pone.0195366. eCollection 2018. PLoS One. 2018. PMID: 29621334 Free PMC article.
-
Overview of Emerging Contaminants and Associated Human Health Effects.Biomed Res Int. 2015;2015:404796. doi: 10.1155/2015/404796. Epub 2015 Dec 2. Biomed Res Int. 2015. PMID: 26713315 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources