Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 May;37(9):2206-16.
doi: 10.1016/S0043-1354(02)00617-6.

Evaluation of the impact of bioaugmentation and biostimulation by in situ hybridization and microelectrode

Affiliations

Evaluation of the impact of bioaugmentation and biostimulation by in situ hybridization and microelectrode

Hisashi Satoh et al. Water Res. 2003 May.

Abstract

Three rotating disk biofilm reactors were operated to evaluate whether bioaugmentation and biostimulation can be used to improve the start-up of microbial nitrification. The first reactor was bioaugmented during start-up period with an enrichment culture of nitrifying bacteria, the second reactor received a synthetic medium containing NH(4)(+) and NO(2)(-) to facilitate concomitant proliferation of ammonia- and nitrite-oxidizing bacteria, and the third reactor was used as a control. To evaluate the effectiveness of bioaugmentation and biostimulation approaches, time-dependent developments of nitrifying bacterial community and in situ nitrifying activity in biofilms were monitored by fluorescence in situ hybridization (FISH) technique and microelectrode measurements of NH(4)(+), NO(2)(-), NO(3)(-), and O(2). In situ hybridization results revealed that addition of the enrichment culture of nitrifying bacteria significantly facilitated development of dense nitrifying bacterial populations in the biofilm shortly after, which led to a rapid start-up and enhancement of in situ nitrification activity. The inoculated bacteria could proliferate and/or survive in the biofilm. In addition, the addition of nitrifying bacteria increased the abundance of nitrifying bacteria in the surface of the biofilm, resulting in the higher nitrification rate. On the other hand, the addition of 2.1mM NO(2)(-) did not stimulate the growth of nitrite-oxidizing bacteria and did inhibit the proliferation of ammonia-oxidizing bacteria instead. Thus, the start-up of NO(2)(-) oxidation was unchanged, and the start-up of NH(4)(+) oxidation was delayed. In all the three biofilm reactors, data sets of time series analyses on population dynamics of nitrifying bacteria determined by FISH, in situ nitrifying activities determined by microelectrode measurements, and the reactor performances revealed an approximate agreement between the appearance of nitrifying bacteria and the initiation of nitrification activity, suggesting that the combination of these techniques was a very powerful monitoring tool to evaluate the effectiveness of bioaugmentation and biostimulation strategies.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources