Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jun 27;278(26):23930-5.
doi: 10.1074/jbc.M303620200. Epub 2003 Apr 11.

Forced evolution of a herbicide detoxifying glutathione transferase

Affiliations
Free article

Forced evolution of a herbicide detoxifying glutathione transferase

David P Dixon et al. J Biol Chem. .
Free article

Abstract

Plant Tau class glutathione transferases (GSTUs) detoxify diphenylether herbicides such as fluorodifen, determining their selectivity in crops and weeds. Using reconstructive PCR, a series of mutant GSTUs were generated from in vitro recombination and mutagenesis of the maize sequences ZmGSTU1 and ZmGSTU2 (with the prefix Zm designating Zea mays L.). A screen of 5000 mutant GSTUs identified seven enzymes with enhanced fluorodifen detoxifying activity. The best performing enhanced fluorodifen detoxifying mutant (EFD) had activity 19-fold higher than the parent enzymes, with a single point mutation conferring this enhancement. Further mutagenesis of this residue generated an EFD with a 29-fold higher catalytic efficiency toward fluorodifen as compared with the parents but with unaltered catalysis toward other substrates. When expressed in Arabidopsis thaliana, the optimized EFD, but not the parent enzymes, conferred enhanced tolerance to fluorodifen. Molecular modeling predicts that the serendipitous mutation giving the improvement in detoxification is due to the removal of an unfavorable interaction together with the introduction of a favorable change in conformation of residues 107-119, which contribute to herbicide binding.

PubMed Disclaimer

Publication types

MeSH terms

Associated data

LinkOut - more resources