Ischaemic preconditioning inhibits opening of mitochondrial permeability transition pores in the reperfused rat heart
- PMID: 12692185
- PMCID: PMC2342939
- DOI: 10.1113/jphysiol.2003.034231
Ischaemic preconditioning inhibits opening of mitochondrial permeability transition pores in the reperfused rat heart
Abstract
Opening of the mitochondrial permeability transition pore (MPTP) is thought to be a critical event in mediating the damage to hearts that accompanies their reperfusion following prolonged ischaemia. Protection from reperfusion injury occurs if the prolonged ischaemic period is preceded by short ischaemic periods followed by recovery. Here we investigate whether such ischaemic preconditioning (IPC) is accompanied by inhibition of MPTP opening. MPTP opening in Langendorff-perfused rat hearts was determined by perfusion with 2-deoxy[3H]glucose ([3H]DOG) and measurement of mitochondrial [3H]DOG entrapment. We demonstrate that IPC inhibits initial MPTP opening in hearts reperfused after 30 min global ischaemia, and subsequently enhances pore closure as hearts recover. However, MPTP opening in mitochondria isolated from IPC hearts occurred more readily than control mitochondria, implying that MPTP inhibition by IPC in situ was secondary to other factors such as decreased calcium overload and oxidative stress. Hearts perfused with cyclosporin A or sanglifehrin A, powerful inhibitors of the MPTP, also recovered better from ischaemia than controls (improved haemodynamic function and less lactate dehydrogenase release). However, the mitochondrial DOG entrapment technique showed these agents to be less effective than IPC at preventing MPTP opening. Our data suggest that protection from reperfusion injury is better achieved by reducing factors that induce MPTP opening than by inhibiting the MPTP directly.
Figures
References
-
- Baines CP, Cohen MV, Downey JM. Signal transduction in ischemic preconditioning: The role of kinases and mitochondrial K-ATP channels. J Cardiovasc Electrophysiol. 1999;10:741–754. - PubMed
-
- Bernardi P. Mitochondrial transport of cations: Channels, exchangers, and permeability transition. Physiol Rev. 1999;79:1127–1155. - PubMed
-
- Brustovetsky N, Klingenberg M. Mitochondrial ADP/ATP carrier can be reversibly converted into a large channel by Ca2+ Biochemistry. 1996;35:8483–8488. - PubMed
-
- Clarke SJ, McStay GP, Halestrap AP. Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A. J Biol Chem. 2002;277:34793–34799. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources