Zinc inhibition of cellular energy production: implications for mitochondria and neurodegeneration
- PMID: 12694382
- DOI: 10.1046/j.1471-4159.2003.01678.x
Zinc inhibition of cellular energy production: implications for mitochondria and neurodegeneration
Abstract
An increasing body of evidence suggests that high intracellular free zinc promotes neuronal death by inhibiting cellular energy production. A number of targets have been postulated, including complexes of the mitochondrial electron transport chain, components of the tricarboxylic acid cycle, and enzymes of glycolysis. Consequences of cellular zinc overload may include increased cellular reactive oxygen species (ROS) production, loss of mitochondrial membrane potential, and reduced cellular ATP levels. Additionally, zinc toxicity might involve zinc uptake by mitochondria and zinc induction of mitochondrial permeability transition. The present review discusses these processes with special emphasis on their potential involvement in brain injury.
Similar articles
-
Inhibition of respiratory processes by overabundance of zinc in neuronal cells.Folia Neuropathol. 2009;47(3):234-9. Folia Neuropathol. 2009. PMID: 19813142 Review.
-
Role of mitochondrial ROS in the brain: from physiology to neurodegeneration.FEBS Lett. 2018 Mar;592(5):692-702. doi: 10.1002/1873-3468.12964. Epub 2018 Jan 18. FEBS Lett. 2018. PMID: 29292494 Review.
-
Geissoschizine methyl ether protects oxidative stress-mediated cytotoxicity in neurons through the 'Neuronal Warburg Effect'.J Ethnopharmacol. 2016 Jul 1;187:249-58. doi: 10.1016/j.jep.2016.04.034. Epub 2016 Apr 22. J Ethnopharmacol. 2016. PMID: 27114061 Free PMC article.
-
Improvement of neuronal bioenergetics by neurosteroids: implications for age-related neurodegenerative disorders.Biochim Biophys Acta. 2014 Dec;1842(12 Pt A):2427-38. doi: 10.1016/j.bbadis.2014.09.013. Epub 2014 Oct 2. Biochim Biophys Acta. 2014. PMID: 25281013
-
Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders.J Neurol Sci. 2007 Jun 15;257(1-2):221-39. doi: 10.1016/j.jns.2007.01.033. Epub 2007 Apr 25. J Neurol Sci. 2007. PMID: 17462670 Review.
Cited by
-
Zinc disrupts central carbon metabolism and capsule biosynthesis in Streptococcus pyogenes.Sci Rep. 2015 Jun 1;5:10799. doi: 10.1038/srep10799. Sci Rep. 2015. PMID: 26028191 Free PMC article.
-
Phosphatidic acid binds to cytosolic glyceraldehyde-3-phosphate dehydrogenase and promotes its cleavage in Arabidopsis.J Biol Chem. 2013 Apr 26;288(17):11834-44. doi: 10.1074/jbc.M112.427229. Epub 2013 Mar 15. J Biol Chem. 2013. PMID: 23504314 Free PMC article.
-
The role of particulate matter-associated zinc in cardiac injury in rats.Environ Health Perspect. 2008 Jan;116(1):13-20. doi: 10.1289/ehp.10379. Environ Health Perspect. 2008. PMID: 18197293 Free PMC article.
-
Parkinson's disease-associated human ATP13A2 (PARK9) deficiency causes zinc dyshomeostasis and mitochondrial dysfunction.Hum Mol Genet. 2014 Jun 1;23(11):2802-15. doi: 10.1093/hmg/ddt623. Epub 2014 Jan 7. Hum Mol Genet. 2014. PMID: 24399444 Free PMC article.
-
Role of copper homeostasis and cuproptosis in heart failure pathogenesis: implications for therapeutic strategies.Front Pharmacol. 2025 Jan 9;15:1527901. doi: 10.3389/fphar.2024.1527901. eCollection 2024. Front Pharmacol. 2025. PMID: 39850564 Free PMC article. Review.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical