Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jun 27;278(26):23398-409.
doi: 10.1074/jbc.M302895200. Epub 2003 Apr 14.

Mechanisms responsible for catalysis of the inhibition of factor Xa or thrombin by antithrombin using a covalent antithrombin-heparin complex

Affiliations
Free article

Mechanisms responsible for catalysis of the inhibition of factor Xa or thrombin by antithrombin using a covalent antithrombin-heparin complex

Nethnapha Paredes et al. J Biol Chem. .
Free article

Abstract

Covalent antithrombin-heparin (ATH) complexes, formed spontaneously between antithrombin (AT) and unfractionated standard heparin (H), have a potent ability to catalyze the inhibition of factor Xa (or thrombin) by added AT. Although approximately 30% of ATH molecules contain two AT-binding sites on their heparin chains, the secondary site does not solely account for the increased activity of ATH. We studied the possibility that all pentasaccharide AT-binding sequences in ATH may catalyze factor Xa inhibition. Chromatography of ATH on Sepharose-AT resulted in >80% binding of the load. Similar chromatographies of non-covalent AT + H mixtures lead to a lack of binding for AT and fractionation of H into unbound (separate from AT) or bound material. Gradient elution of ATH from Sepharose-AT gave 2 peaks, a peak containing higher affinity material that had greater anti-factor Xa catalytic activity (708 units/mg heparin) compared with the peak containing lower affinity material (112 units/mg). Sepharose-AT chromatography of the ATH component with short heparin chains (<or=12 monosaccharides) resulted in active unbound (40%) and bound fractions (190 and 560 units/mg, respectively). Factor Xa-ATH or thrombin-ATH inhibitor complexes gave chromatograms on Sepharose-AT with more unbound material compared with that of free ATH. Also, ATH did not bind to Sepharose-heparin, and the intrinsic fluorescence due to activation of AT in ATH by its heparin chain was reversed at higher [NaCl] than that required to dissociate non-covalent AT.H complexes. Thus, exogenous AT can compete with the AT moiety of ATH for binding to the covalently linked heparin chain, leading to catalytic inhibition of factor Xa or thrombin. These data may suggest that access to pentasaccharide units in non-covalent AT.H complexes by free AT may be facile.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources