Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jan-Feb;76(1):41-51.
doi: 10.1086/374274.

Effect of anoxia and pharmacological anoxia on whole-cell NMDA receptor currents in cortical neurons from the western painted turtle

Affiliations

Effect of anoxia and pharmacological anoxia on whole-cell NMDA receptor currents in cortical neurons from the western painted turtle

Damian Seung-Ho Shin et al. Physiol Biochem Zool. 2003 Jan-Feb.

Abstract

The mammalian brain undergoes rapid cell death during anoxia that is characterized by uncontrolled Ca(2+) entry via N-methyl-D-aspartate receptors (NMDARs). In contrast, the western painted turtle is extremely anoxia tolerant and maintains close-to-normal [Ca(2+)](i) during periods of anoxia lasting from days to months. A plausible mechanism of anoxic survival in turtle neurons is the regulation of NMDARs to prevent excitotoxic Ca(2+) injury. However, studies using metabolic inhibitors such as cyanide (NaCN) as a convenient method to induce anoxia may not represent a true anoxic stress. This study was undertaken to determine whether turtle cortical neuron whole-cell NMDAR currents respond similarly to true anoxia with N(2) and to NaCN-induced anoxia. Whole-cell NMDAR currents were measured during a control N(2)-induced anoxic transition and a control NaCN-induced transition. During anoxia with N(2) normalized, NMDAR currents decreased to 35.3%+/-10.8% of control values. Two different NMDAR current responses were observed during NaCN-induced anoxia: one resulted in a 172%+/-51% increase in NMDAR currents, and the other was a decrease to 48%+/-14% of control. When responses were correlated to the two major neuronal subtypes under study, we found that stellate neurons responded to NaCN treatment with a decrease in NMDAR current, while pyramidal neurons exhibited both increases and decreases. Our results show that whole-cell NMDAR currents respond differently to NaCN-induced anoxia than to the more physiologically relevant anoxia with N(2).

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources