Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Apr 23;51(9):2555-8.
doi: 10.1021/jf026228i.

In vitro study of the relationship between the structure of ginsenoside and its antioxidative or prooxidative activity in free radical induced hemolysis of human erythrocytes

Affiliations

In vitro study of the relationship between the structure of ginsenoside and its antioxidative or prooxidative activity in free radical induced hemolysis of human erythrocytes

Zai-Qun Liu et al. J Agric Food Chem. .

Abstract

Ginsenoside, the major active component in Panax ginseng, which has been used in traditional Chinese medicine, contains a series of derivatives of the triterpene dammarane being attached by some sugar moieties. To clarify the relationship between the structure of ginsenoside and its properties, 11 individual ginsenosides, along with the central structures of ginsenoside, protopanaxadiol and protopanaxatriol, are used in 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH) induced hemolysis of human erythrocytes, a good experimental model to research free radical induced membrane damage and to evaluate the antioxidative or prooxidative activities of various antioxidants conveniently. It is found that the central structures of ginsenosides, either protopanaxadiol or protopanaxatriol, play a prooxidative role in AAPH-induced hemolysis of erythrocytes. As to the individual ginsenoside, if there are no sugar moieties attached to the 20-position of the triterpene dammarane, the ginsenoside acts as a prooxidant, that is, Rg3, Rh2, and Rg2. A glucose attached to the 6-position instead of the 20-position sugar moieties can make the ginsenoside an antioxidant, that is, Rh1. The antioxidants among ginsenosides follow two different mechanisms that can be expressed mathematically by the Boltzmann equation, that is, Rc and Rb1, and a polynomial equation, that is, Re, Rd, R1, Rg1, Rb3, and Rh1. The orders of antioxidative ability are Rc > Rb1 and Re > Rd > R1 > Rg1 > Rb3 > Rh1, respectively.

PubMed Disclaimer

MeSH terms