Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Mar;10(3):269-77.
doi: 10.1038/sj.cdd.4401149.

Inhibition of PKCalpha induces a PKCdelta-dependent apoptotic program in salivary epithelial cells

Affiliations

Inhibition of PKCalpha induces a PKCdelta-dependent apoptotic program in salivary epithelial cells

A A Matassa et al. Cell Death Differ. 2003 Mar.

Abstract

We have used expression of a kinase dead mutant of PKCalpha (PKCalphaKD) to explore the role of this isoform in salivary epithelial cell apoptosis. Expression of PKCalphaKD by adenovirus-mediated transduction results in a dose-dependent induction of apoptosis in salivary epithelial cells as measured by the accumulation of sub-G1 DNA, activation of caspase-3, and cleavage of PKCdelta and PKCzeta, known caspase substrates. Induction of apoptosis is accompanied by nine-fold activation of c-Jun-N-terminal kinase, and an approximately two to three-fold increase in activated mitogen-activated protein kinase (MAPK) as well as total MAPK protein. Previous studies from our laboratory have shown that PKCdelta activity is essential for the apoptotic response of salivary epithelial cells to a variety of cell toxins. To explore the contribution of PKCdelta to PKCalphaKD-induced apoptosis, salivary epithelial cells were cotransduced with PKCalphaKD and PKCdeltaKD expression vectors. Inhibition of endogenous PKCdelta blocked the ability of PKCalphaKD to induce apoptosis as indicated by cell morphology, DNA fragmentation, and caspase-3 activation, indicating that PKCdelta activity is required for the apoptotic program induced under conditions where PKCalpha is inhibited. These findings indicate that PKCalpha functions as a survival factor in salivary epithelial cells, while PKCdelta functions to regulate entry into the apoptotic pathway.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources