Early-phase prandial insulin secretion: its role in the pathogenesis of type 2 diabetes mellitus and its modulation by repaglinide
- PMID: 12702004
Early-phase prandial insulin secretion: its role in the pathogenesis of type 2 diabetes mellitus and its modulation by repaglinide
Abstract
The major contributory factor to increasing hyperglycaemia in established Type 2 diabetes mellitus (T2DM) appears to be the progressive delay and attenuation of the prandial insulin response. An important consequence of this derangement is that hepatic glucose production is no longer suppressed during times of prandial glucose intake. Together with a relative impairment in the rate of peripheral glucose disposal, this leads to supra-physiological plasma glucose excursions, which may damage the vasculature. An obvious therapeutic strategy, therefore, would be to increase insulin availability when most needed--in the early prandial phase. In experiments with exogenous insulin interventions, peak post-prandial blood glucose increments were curtailed without undue increases in total insulin exposure. However, available evidence suggests that the sulphonylurea glibenclamide does not effectively alter early-phase prandial insulin release but predominately increases late-phase and basal insulin output, thus incurring the risk of hypoglycaemia. The novel insulin secretagogue repaglinide, by contrast, augments early-phase prandial insulin secretion when taken before meals, as shown by studies in non-diabetic people and patients with newly diagnosed, previously untreated T2DM. Repaglinide exerts its greatest effect on the insulin secretion rate during the first 30 min after a meal is started, thereby going some way to restoring the early insulin secretion curve seen after a meal in non-diabetic people. No residual secretagogue activity is seen 4 hr after taking a single dose of up to 2 mg. Prandial glucose regulation with repaglinide could be associated with lower post-prandial glucose excursions and less risk of post-prandial hypoglycaemia than glibenclamide.
Publication types
MeSH terms
Substances
LinkOut - more resources
Medical