Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Oct 15;254(2):372-83.
doi: 10.1006/jcis.2002.8596.

Frequency-dependent electroosmosis

Affiliations

Frequency-dependent electroosmosis

Philip M Reppert et al. J Colloid Interface Sci. .

Abstract

This paper presents a theory for frequency-dependent electroosmosis. It is shown that for a closed capillary the electroosmosis frequency-dependent ratio of DeltaV/DeltaP is constant with increasing frequency until inertial effects become prevalent, at which time DeltaV/DeltaP starts to decrease with increasing frequency. The frequency response of the electroosmosis coupling coefficient is shown to be dependent on the capillary radius. As the capillary radius is made smaller, inertial effects start to occur at higher frequencies. As part of this paper, frequency-dependent electroosmosis is compared to frequency-dependent streaming potentials. In this comparison it is shown that inertial effects start to become more prevalent at higher frequencies for the closed capillary frequency-dependent electroosmosis case than for the frequency-dependent streaming potential case in the same capillary. It is also shown that this difference is due to a second viscosity (transverse) wave that emanates from the velocity zero within the capillary for the electroosmosis case. The second viscosity wave superposes with the viscosity wave that emanates from wall of the capillary to effectively reduce the hydraulic radius of the capillary. Data are presented for a 0.127-mm capillary to support the findings in this paper.

PubMed Disclaimer

LinkOut - more resources