A unifying framework for partial volume segmentation of brain MR images
- PMID: 12703764
- DOI: 10.1109/TMI.2002.806587
A unifying framework for partial volume segmentation of brain MR images
Abstract
Accurate brain tissue segmentation by intensity-based voxel classification of magnetic resonance (MR) images is complicated by partial volume (PV) voxels that contain a mixture of two or more tissue types. In this paper, we present a statistical framework for PV segmentation that encompasses and extends existing techniques. We start from a commonly used parametric statistical image model in which each voxel belongs to one single tissue type, and introduce an additional downsampling step that causes partial voluming along the borders between tissues. An expectation-maximization approach is used to simultaneously estimate the parameters of the resulting model and perform a PV classification. We present results on well-chosen simulated images and on real MR images of the brain, and demonstrate that the use of appropriate spatial prior knowledge not only improves the classifications, but is often indispensable for robust parameter estimation as well. We conclude that general robust PV segmentation of MR brain images requires statistical models that describe the spatial distribution of brain tissues more accurately than currently available models.
Similar articles
-
Unifying framework for multimodal brain MRI segmentation based on Hidden Markov Chains.Med Image Anal. 2008 Dec;12(6):639-52. doi: 10.1016/j.media.2008.03.001. Epub 2008 Mar 17. Med Image Anal. 2008. PMID: 18440268
-
Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images.IEEE Trans Med Imaging. 2005 Dec;24(12):1548-65. doi: 10.1109/TMI.2005.857652. IEEE Trans Med Imaging. 2005. PMID: 16350916
-
An accurate and efficient bayesian method for automatic segmentation of brain MRI.IEEE Trans Med Imaging. 2002 Aug;21(8):934-45. doi: 10.1109/TMI.2002.803119. IEEE Trans Med Imaging. 2002. PMID: 12472266
-
Partial volume effect modeling for segmentation and tissue classification of brain magnetic resonance images: A review.World J Radiol. 2014 Nov 28;6(11):855-64. doi: 10.4329/wjr.v6.i11.855. World J Radiol. 2014. PMID: 25431640 Free PMC article. Review.
-
Bone labelling on micro-magnetic resonance images.Med Image Anal. 1999 Jun;3(2):119-28. doi: 10.1016/s1361-8415(99)80002-4. Med Image Anal. 1999. PMID: 10711994 Review.
Cited by
-
A multiscale and multiblock fuzzy C-means classification method for brain MR images.Med Phys. 2011 Jun;38(6):2879-91. doi: 10.1118/1.3584199. Med Phys. 2011. PMID: 21815363 Free PMC article.
-
Genetic algorithms for finite mixture model based voxel classification in neuroimaging.IEEE Trans Med Imaging. 2007 May;26(5):696-711. doi: 10.1109/TMI.2007.895453. IEEE Trans Med Imaging. 2007. PMID: 17518064 Free PMC article.
-
A Theoretical Solution to MAP-EM Partial Volume Segmentation of Medical Images.Int J Imaging Syst Technol. 2009;19(2):111-119. doi: 10.1002/ima.20187. Int J Imaging Syst Technol. 2009. PMID: 19768123 Free PMC article.
-
An artificial immune-activated neural network applied to brain 3D MRI segmentation.J Digit Imaging. 2008 Oct;21 Suppl 1(Suppl 1):S69-88. doi: 10.1007/s10278-007-9081-0. Epub 2007 Dec 11. J Digit Imaging. 2008. PMID: 18071820 Free PMC article. Review.
-
Manual-Protocol Inspired Technique for Improving Automated MR Image Segmentation during Label Fusion.Front Neurosci. 2016 Jul 19;10:325. doi: 10.3389/fnins.2016.00325. eCollection 2016. Front Neurosci. 2016. PMID: 27486386 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical