Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jun;195(3):428-34.
doi: 10.1002/jcp.10259.

Activation of PKC-epsilon and ERK1/2 participates in shear-induced endothelial MCP-1 expression that is repressed by nitric oxide

Affiliations

Activation of PKC-epsilon and ERK1/2 participates in shear-induced endothelial MCP-1 expression that is repressed by nitric oxide

Chih-Wen Ni et al. J Cell Physiol. 2003 Jun.

Abstract

Vascular endothelial cells (ECs) continuously experience hemodynamic shear stress generated from blood flow. Previous studies have demonstrated that shear stress modulates monocyte chemotactic protein-1 (MCP-1) expression in ECs. This study explored the roles of protein kinase C (PKC), extracellular signal-regulated protein kinase (ERK1/2), and nitric oxide (NO) in sheared-induced MCP-1 expression in ECs. The activation of PKC-alpha and PKC-epsilon isoforms was observed in ECs exposed to shear stress. The use of an inhibitor (calphostin C) to PKC-alpha and PKC-epsilon decreased ERK1/2 activation and MCP-1 induction by shear, whereas an inhibitor (Go6976) to PKC-alpha did not affect ERK1/2 activation or MCP-1 induction. Inhibition of ERK1/2 activation by PD98059 blocked MCP-1 induction. Transfection of ECs with an antisense to PKC-epsilon abolished the shear inducibility of MCP-1 promoter. These results demonstrate that PKC-epsilon and ERK1/2 participate in shear-induced MCP-1 expression. We also examined the regulatory role of NO in MCP-1 expression. An NO donor (NOC18) suppressed shear-induced activation of PKC-epsilon and ERK1/2, and also repressed MCP-1 induction. Consistently, overexpression of endothelial nitric oxide synthase (eNOS) to enhance the endogenous generation of NO in ECs decreased the activation of PKC-epsilon and ERK1/2, and also inhibited MCP-1 expression. Taken together, these findings suggest that PKC-epsilon and ERK1/2 are critical in the signaling pathway(s) leading to the MCP-1 expression induced by shear stress. Additionally, this study indicates that NO, by repressing PKC-epsilon activity and ERK pathway activation, attenuates shear-induced MCP-1 expression.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources