Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 May 15;89(2):244-53.
doi: 10.1002/jcb.10501.

Interferon-gamma induces reactive oxygen species and endoplasmic reticulum stress at the hepatic apoptosis

Affiliations

Interferon-gamma induces reactive oxygen species and endoplasmic reticulum stress at the hepatic apoptosis

Yoshifumi Watanabe et al. J Cell Biochem. .

Abstract

Interferon-gamma (IFN-gamma) induces cell-cycle arrest and p53-independent apoptosis in primary cultured hepatocytes. However, the detailed mechanism, including regulating molecules, is still unclear. In this study, we found that IFN-gamma induced generation of reactive oxygen species (ROS) in primary hepatocytes and that pyrrolidinedithiocarbamate (PDTC), an anti-oxidant reagent, completely suppressed IFN-gamma-induced hepatic apoptosis. PDTC blocked apoptosis downstream from IRF-1 and upstream from caspase activation, suggesting that the generation of ROS occurred between these stages. However, IFN-gamma also induced the generation of ROS in IRF-1-deficient hepatocytes, cells insensitive to IFN-gamma-induced apoptosis. Moreover, a general cyclooxygenase (COX) inhibitor, indomethacin (but not the cyclooxygenase 2-specific inhibitor, NS-398) also inhibited the apoptosis without blocking the generation of ROS. Both PDTC and indomethacin also blocked IFN-gamma-induced release of cytochrome c from mitochondria. These results suggest that ROS are not the only or sufficient mediators of IFN-gamma-induced hepatic apoptosis. In contrast, we also found that IFN-gamma induced endoplasmic reticulum (ER) stress proteins, CHOP/GADD153 and caspase 12, in wild-type primary hepatocytes, but induced only caspase 12 and not CHOP/GADD153 protein in IRF-1-deficient hepatocytes. These results suggest that IFN-gamma induces ER stress in primary hepatocytes. Both the ROS and ER stress induced by IFN-gamma may be complementary mediators that induce apoptosis in primary hepatocytes.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources