Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Jul;24(16):2673-83.
doi: 10.1016/s0142-9612(03)00069-3.

Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti-29Nb-13Ta-4.6Zr

Affiliations
Comparative Study

Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti-29Nb-13Ta-4.6Zr

Mitsuo Niinomi. Biomaterials. 2003 Jul.

Abstract

A beta type titanium alloy, Ti-29Nb-13Ta-4.6Zr, was newly designed and developed for biomedical applications. The new alloy contains non-toxic elements such as Nb, Ta, and Zr. In the present study, phases that appeared in the new alloy through various aging treatments were characterized by hardness tests and microstructural observations in order to identify the phase transformation. Fatigue properties of the new alloy were investigated. Young's modulus and cyto-toxicity of the new alloy were also evaluated. Precipitated phases distribute homogeneously over the whole specimen, and they are alpha phase, a small amount of omega phase, and beta phase when the new alloys are subjected to aging treatment at 673K for 259.2ks after solution treatment at 1063K for 3.6ks. The fatigue strength of the new alloy subjected to aging at 673K for 259.2ks after solution treatment at 1063K for 3.6ks is much better than when subjected to other aging treatments. In this case, the fatigue limit is around 700MPa. Young's modulus of the new alloy is much smaller than that of Ti-6Al-4V ELI. The cyto-toxicity of the new alloy is equivalent to that of pure Ti. Therefore, it is proposed that the new alloy, Ti-29Nb-13Ta-4.6Zr, will be of considerable use in biomedical applications.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources