Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 May;92(5):1095-111.
doi: 10.1002/jps.10377.

Irreversible aggregation of recombinant bovine granulocyte-colony stimulating factor (bG-CSF) and implications for predicting protein shelf life

Affiliations

Irreversible aggregation of recombinant bovine granulocyte-colony stimulating factor (bG-CSF) and implications for predicting protein shelf life

Christopher J Roberts et al. J Pharm Sci. 2003 May.

Abstract

The kinetics of irreversible aggregation of bovine Granulocyte-Colony Stimulating Factor (bG-CSF) in solution were investigated as a function of temperature (T), concentration, and pH, and analyzed in terms of an Extended Lumry-Eyring model of protein aggregation proceeding via a non-native conformational state. In the spirit of classic Lumry-Eyring models, the observed kinetics are separated into contributions from thermodynamic or conformational stability of unaggregated native and non-native states, and the intrinsic aggregation kinetics of non-native molecules. It is found that a detailed treatment of the intrinsic kinetics coupled with a two-state approximation of the reversible unfolding transition is sufficient to allow quantitative prediction of low-T stability from high-T data despite highly non-Arrhenius kinetics. Accounting for shifts in conformational equilibrium quantitatively captures the non-Arrhenius T dependence, without requiring the assumption of a change in the rate-determining step with T. From a more general perspective, the observed aggregation behavior of bG-CSF is consistent with the rate-determining step being aggregation at T below a crossover temperature T(x) that is inversely related to initial protein concentration. Above T(x), irreversible unfolding is presumably the rate-determining step. The results illustrate that protein aggregation kinetics can, in principle, be predicted quantitatively from so-called accelerated data provided the thermodynamic and kinetic components can be separately extrapolated to longer term storage conditions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources