Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 May;73(5):591-9.
doi: 10.1189/jlb.1202599.

Diminished production of anti-inflammatory mediators during neutrophil apoptosis and macrophage phagocytosis in chronic granulomatous disease (CGD)

Affiliations

Diminished production of anti-inflammatory mediators during neutrophil apoptosis and macrophage phagocytosis in chronic granulomatous disease (CGD)

Joanne R Brown et al. J Leukoc Biol. 2003 May.

Abstract

Genetic defects in the phagocyte nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase enzyme system result in chronic granulomatous disease (CGD). In addition to recurrent, life-threatening infections, patients with CGD frequently present with sterile inflammatory complications, suggesting that NADPH-oxidase deficiency predisposes to these responses in the absence of persistent microbial infection. The mechanisms involved in the aberrant, inflammatory process are unknown. In this study, we have shown that neutrophils isolated from CGD patients, which are more resistant to spontaneous apoptosis in vitro, also produce significantly less of the anti-inflammatory mediator cyclopentenone prostaglandin D(2) (PGD(2)). In addition, during phagocytosis of opsonized and nonopsonized apoptotic targets, CGD macrophages are severely compromised in their ability to produce PGD(2) and transforming growth factor-beta (TGF-beta). We suggest that delayed apoptosis of inflammatory cells, such as neutrophils and deficient production of the anti-inflammatory mediators PGD(2) and TGF-beta during macrophage clearance of apoptotic debris and invading pathogens, contributes to persistence of inflammation in CGD.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources