Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 May;85(4):1075-86.
doi: 10.1046/j.1471-4159.2003.01773.x.

Increased synaptosomal dopamine content and brain concentration of paraquat produced by selective dithiocarbamates

Affiliations

Increased synaptosomal dopamine content and brain concentration of paraquat produced by selective dithiocarbamates

Brian K Barlow et al. J Neurochem. 2003 May.

Abstract

Exposure to pesticides may be a risk factor for Parkinson's disease based on epidemiologic data in humans, animal models and in vitro studies. Different dithiocarbamate pesticides potentiate the toxicity of both 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and paraquat in mouse models of Parkinsonism by an unknown mechanism. This study examined the effects of commercially used dithiocarbamates on [3H]dopamine transport in striatal synaptosomal vesicles and on the concentration of [14C]paraquat in vivo in mice. Different ethylenebis-dithiocarbamates and diethyl-dithiocarbamate increased dopamine accumulation in synaptosomes, whereas dimethyl-dithiocarbamate and methyl-dithiocarbamate did not. Increased dopamine accumulation in synaptosomes was dose dependent and was related to the carbon backbone of these molecules. The dithiocarbamates that increased accumulation of dopamine did not alter the influx of dopamine, but rather delayed the efflux out of synaptosomes. These same dithiocarbamates also increased the tissue content of [14C]paraquat in vivo by a mechanism that appeared to be distinct from the dopamine transporter. There was a consistent relationship between the dithiocarbamates that increased synaptosomal accumulation of dopamine and tissue content of paraquat, with those previously demonstrated to enhance paraquat toxicity in vivo. These results suggest that selective dithiocarbamates may alter the kinetics of different endogenous and exogenous compounds to enhance their neurotoxicity.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources