Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 May;98(5):1223-30.
doi: 10.1097/00000542-200305000-00026.

GABAergic interneurons at supraspinal and spinal levels differentially modulate the antinociceptive effect of nitrous oxide in Fischer rats

Affiliations

GABAergic interneurons at supraspinal and spinal levels differentially modulate the antinociceptive effect of nitrous oxide in Fischer rats

Ryo Orii et al. Anesthesiology. 2003 May.

Abstract

Background: The study hypothesizes that nitrous oxide (N(2)O) releases opioid peptide in the brain stem, which results in inhibition of gamma-aminobutyric acid-mediated (GABAergic) neurons that tonically inhibit the descending noradrenergic inhibitory neurons (DNIN), resulting in activation of DNIN. In the spinal cord, activation of DNIN leads to the release of norepinephrine, which inhibits nociceptive processing through direct activation of alpha2 adrenoceptor and indirect activation of GABAergic neurons through alpha1 adrenoceptor. Arising from this hypothesis, it follows that GABAergic neurons will modulate the antinociceptive effect of N(2)O in diametrically opposite directions at supraspinal and spinal levels. The authors have tested this tenet and further examined the effect of midazolam, a GABA-mimetic agent, on N(2)O-induced antinociceptive effect.

Methods: Adult male Fischer rats were administered muscimol (GABA(A) receptor agonist) intracerebroventricularly (icv), gabazine (GABA(A) receptor antagonist) intrathecally (intrathecal), or midazolam intraperitoneally (intraperitoneal). Fifteen minutes later, they were exposed to air or 75% N(2)O and were subjected to the plantar test after 30 min of gas exposure. In some animals administered with midazolam, gas exposure was continued for 90 min, and the brain and spinal cord were examined immunohistochemically.

Results: The N(2)O-induced antinociceptive effect, which was attenuated by icv muscimol, intrathecal gabazine, and intraperitoneal midazolam. Midazolam inhibited N(2)O-induced c-Fos expression (a marker of neuronal activation) in the pontine A7 and spinal cord.

Conclusions: The GABAergic neurons modulate the antinociceptive effect of N(2)O in opposite directions at supraspinal and spinal levels. The pronociceptive effects of enhancement at the supraspinal GABAergic site predominate in response to systemically administered midazolam.

PubMed Disclaimer

Publication types

LinkOut - more resources