Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003;5(2):68-75.
doi: 10.1186/ar625. Epub 2003 Jan 20.

Systemic lupus erythematosus and the type I interferon system

Affiliations

Systemic lupus erythematosus and the type I interferon system

Lars Rönnblom et al. Arthritis Res Ther. 2003.

Abstract

Patients with systemic lupus erythematosus (SLE) have ongoing interferon-alpha (IFN-alpha) production and serum IFN-alpha levels are correlated with both disease activity and severity. Recent studies of patients with SLE have demonstrated the presence of endogenous IFN-alpha inducers in such individuals, consisting of small immune complexes (ICs) containing IgG and DNA. These ICs act specifically on natural IFN-alpha-producing cells (NIPCs), often termed plasmacytoid dendritic cells (PDCs). Given the fact that the NIPC/PDC has a key role in both the innate and adaptive immune response, as well as the many immunoregulatory effects of IFN-alpha, these observations might be important for the understanding of the etiopathogenesis of SLE. In this review we briefly describe the biology of the type I IFN system, with emphasis on inducers, producing cells (especially NIPCs/PDCs), IFN-alpha actions and target immune cells that might be relevant in SLE. On the basis of this information and results from studies in SLE patients, we propose a hypothesis that explains how NIPCs/PDCs become activated and have a pivotal etiopathogenic role in SLE. This hypothesis also indicates new therapeutic targets in this autoimmune disease.

PubMed Disclaimer

Figures

Figure 1
Figure 1
The central role of the type I interferon (IFN) system in the etiopathogenesis of systemic lupus erythematosus (SLE). (a) A schematic overview of IFN-α inducers and target cells. Initially, IFN-α is produced by the natural IFN-α producing cell (NIPC)/plasmacytoid dendritic cell (PDC) as a consequence of viral or bacterial infections. The IFN-α produced promotes DC1 development, T cell activation and autoantibody production by B cells. DNA or RNA and associated proteins, generated from apoptotic or necrotic cells, and autoantibodies form immune complexes (ICs) that act as endogenous IFN-α inducers and cause a prolonged IFN-α production. This IFN-α further stimulates the autoimmune response with more autoantibody production, IC formation, and co-stimulation of NIPCs/PDCs; finally, a vicious circle is created with an ongoing IFN-α production sustaining the autoimmune process. (b) Induction of IFN-α production in NIPCs/PDCs. Viruses, bacterial components, CpG-DNA and interferogenic ICs (IICs) can all trigger NIPCs/PDCs to produce IFN-α. FcγRIIa is necessary for the activation of NIPCs/PDCs by IICs. In addition, these cells express Toll-like receptor 9 (TLR9), mediating IFN-α synthesis induced by CpG-DNA, but the role of this receptor for the response to IICs is unknown. TLR7 activation by imiquimod also induces IFN-α production, but the function of TLR1, 6, and 10 in IFN-α production by NIPCs/PDCs is unknown. Ligation of CD40 enhances IFN-α synthesis and can also cause interleukin-12 (IL-12) production. In contrast, the ligation of blood dendritic cell antigen-2 (BDCA-2) by a monoclonal antibody inhibits the IFN-α production, but the natural ligand is unknown. IFNAR, IFN-α/β receptor. (c) Maturation of dendritic cells (DCs) and activation of T cells. The IFN-α produced induces the maturation of PDCs and the differentiation of monocytes to type 1 DCs; both cell types express the co-stimulatory molecules CD80 and CD86. These cells subsequently activate autoreactive T helper (Th) cells with specificity for processed antigens in IICs, for example. The cytokines IL-12 and IFN-α promote the Th1 response and prevent apoptosis in activated T cells. IL-12R, IL-12 receptor; TCR, T cell antigen receptor. (d) Production of autoantibodies by B cells. Activated Th cells provide help to B cells with reactivity to autoantigens in IICs, and these B cells are stimulated by IFN-α to prolonged survival and enhanced response to B cell antigen receptor (BCR) ligation. IFN-α also upregulates BLyS and APRIL ('a proliferation-inducing ligand') on DCs, which further promotes the B cell response and elicits CD40-independent Ig class switching and plasmacytoid differentiation. Autoantibody production is facilitated by the ability of DNA/RNA-containing autoantigens to activate B cells directly by simultaneous binding to BCR and TLR9. The autoantibodies produced bind to DNA and RNA and form more IICs, which trigger the continuous IFN-α production that is the fuel in the autoimmune process.

References

    1. Kelly JA, Moser KL, Harley JB. The genetics of systemic lupus erythematosus: putting the pieces together. Genes Immun. 2002;3(Suppl):S71–S85. - PubMed
    1. Tsao BP. An update on genetic studies of systemic lupus erythematosus. Curr Rheumatol Rep. 2002;4:359–367. - PubMed
    1. Grammer AC, Lipsky PE. CD154-CD40 interactions mediate differentiation to plasma cells in healthy individuals and persons with systemic lupus erythematosus. Arthritis Rheum. 2002;46:1417–1429. doi: 10.1002/art.10287. - DOI - PubMed
    1. Casciola-Rosen LA, Anhalt G, Rosen A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med. 1994;179:1317–1330. - PMC - PubMed
    1. Cocca BA, Cline AM, Radic MZ. Blebs and apoptotic bodies are B cell autoantigens. J Immunol. 2002;169:159–166. - PubMed

Publication types

MeSH terms