Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 May;88(3):369-79.
doi: 10.1113/eph8802566.

[Ca2+]i oscillations induced by high [K+]o in acetylcholine-stimulated rat submandibular acinar cells: regulation by depolarization, cAMP and pertussis toxin

Affiliations
Free article

[Ca2+]i oscillations induced by high [K+]o in acetylcholine-stimulated rat submandibular acinar cells: regulation by depolarization, cAMP and pertussis toxin

Hideyo Yoshida et al. Exp Physiol. 2003 May.
Free article

Abstract

Maintaining the extracellular K(+) concentration ([K(+)](o)) between 15 and 60 mM induced oscillations in the intracellular Ca(2+) concentration ([Ca(2+)](i)) in rat submandibular acinar cells during stimulation with acetylcholine (ACh, 1 micro M). These [Ca(2+)](i) oscillations were also induced by 1 micro M thapsigargin and were inhibited by 50 micro M La(3+), 1 micro M Gd(3+), or the removal of extracellular Ca(2+), indicating that the [Ca(2+)](i) oscillations were generated by store-operated Ca(2+) entry (SOC). The frequency of the ACh-evoked [Ca(2+)](i) oscillations increased from 0.8 to 2.3 mHz as [K(+)](o) was increased from 15 to 50 mM. TEA (an inhibitor of K(+) channels) also induced [Ca(2+)](i) oscillations at [K(+)](o) of 4.5 or 7.5 mM in ACh-stimulated cells. These data suggest that depolarization causes [Ca(2+)](i) to oscillate in ACh-stimulated submandibular acinar cells. Pertussis toxin (PTX, an inhibitor of G proteins) caused [Ca(2+)](i) to be sustained at a high level in ACh-stimulated cells at 25 mM or 60 mM [K(+)](o). This suggests that the [Ca(2+)](i) oscillations are generated by a periodic inactivation of the SOC channels via PTX-sensitive G proteins, which are stimulated by depolarization. Moreover, in the presence of DBcAMP or forskolin which accumulated cAMP the frequency of the [Ca(2+)](i) oscillations remained constant (approximately 1.2 mHz) when [K(+)](o) was maintained in the range 25-60 mM. Based on these observations in ACh-stimulated submandibular acinar cells, we conclude that depolarization stimulates the PTX-sensitive G proteins, which inactivate the SOC channels periodically ([Ca(2+)](i) oscillation), while hyperpolarization or PTX inhibits the G proteins, maintaining the activation of the SOC channels. Accumulation of cAMP is likely to modulate the PTX-sensitive G proteins.

PubMed Disclaimer

LinkOut - more resources