Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Mar-Apr;16(2):91-101.
doi: 10.1002/jmr.612.

Therapeutic approaches to superantigen-based diseases: a review

Affiliations
Review

Therapeutic approaches to superantigen-based diseases: a review

Elizabeth Hong-Geller et al. J Mol Recognit. 2003 Mar-Apr.

Abstract

Superantigens secreted by the bacterial pathogen Staphyloccocus aureus are extremely potent toxins that overstimulate the host immune system by binding to the MHC class II and T cell receptors and activating a large population of T cells. Superantigen infection has been shown to be the causative agents in acute diseases, food poisoning and toxic shock syndrome, and in more chronic conditions such as inflammatory skin diseases. In addition to the toll on public health, S. aureus superantigens also represent a potential biothreat to our national security. To address these risks, a number of different therapeutic strategies have been developed that target different aspects of the pathogenic mechanism of S. aureus and superantigen infection. These therapies, which encompass strategies as diverse as production of neutralizing antibodies, inhibitory peptide/receptor design and blockage of superantigen gene transcription, are being tested for treatment of established S. aureus infections in pre- and post-exposure scenarios. In this review, we will describe these different strategies and their efficacies in inhibition of superantigen-induced effects in the host, and present the future outlook for successfully producing therapies for superantigen-based disease.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources