Geometry-based finite-element modeling of the electrical contact between a cultured neuron and a microelectrode
- PMID: 12723062
- DOI: 10.1109/TBME.2003.809486
Geometry-based finite-element modeling of the electrical contact between a cultured neuron and a microelectrode
Abstract
The electrical contact between a substrate embedded microelectrode and a cultured neuron depends on the geometry of the neuron-electrode interface. Interpretation and improvement of these contacts requires proper modeling of all coupling mechanisms. In literature, it is common practice to model the neuron-electrode contact using lumped circuits in which large simplifications are made in the representation of the interface geometry. In this paper, the finite-element method is used to model the neuron-electrode interface, which permits numerical solutions for a variety of interface geometries. The simulation results offer detailed spatial and temporal information about the combined electrical behavior of extracellular volume, electrode-electrolyte interface and neuronal membrane.
Similar articles
-
Extracellular stimulation window explained by a geometry-based model of the neuron-electrode contact.IEEE Trans Biomed Eng. 2002 Dec;49(12 Pt 2):1591-9. doi: 10.1109/TBME.2002.804504. IEEE Trans Biomed Eng. 2002. PMID: 12549741
-
Modeled channel distributions explain extracellular recordings from cultured neurons sealed to microelectrodes.IEEE Trans Biomed Eng. 2002 Dec;49(12 Pt 2):1580-90. doi: 10.1109/TBME.2002.805555. IEEE Trans Biomed Eng. 2002. PMID: 12549740
-
A new 3-D finite-element model based on thin-film approximation for microelectrode array recording of extracellular action potential.IEEE Trans Biomed Eng. 2008 Feb;55(2 Pt 1):683-92. doi: 10.1109/TBME.2007.903522. IEEE Trans Biomed Eng. 2008. PMID: 18270005
-
Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.Adv Anat Embryol Cell Biol. 2003;173:III-IX, 1-77. doi: 10.1007/978-3-642-55469-8. Adv Anat Embryol Cell Biol. 2003. PMID: 12901336 Review.
-
Modeling extracellular electrical neural stimulation: from basic understanding to MEA-based applications.J Physiol Paris. 2012 May-Aug;106(3-4):146-58. doi: 10.1016/j.jphysparis.2011.10.003. Epub 2011 Oct 20. J Physiol Paris. 2012. PMID: 22036892 Review.
Cited by
-
Self-repair behaviour of the neuronal cell membrane by conductive atomic force indentation.IET Nanobiotechnol. 2019 Dec;13(9):891-895. doi: 10.1049/iet-nbt.2019.0123. IET Nanobiotechnol. 2019. PMID: 31811756 Free PMC article.
-
Technical feasibility study for production of tailored multielectrode arrays and patterning of arranged neuronal networks.PLoS One. 2018 Feb 23;13(2):e0192647. doi: 10.1371/journal.pone.0192647. eCollection 2018. PLoS One. 2018. PMID: 29474358 Free PMC article.
-
Microscopic imaging of electrical current distribution at the electrode-electrolyte interface.Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:4252-5. doi: 10.1109/EMBC.2014.6944563. Annu Int Conf IEEE Eng Med Biol Soc. 2014. PMID: 25570931 Free PMC article.
-
Fabrication and characterization of 3D micro- and nanoelectrodes for neuron recordings.Sensors (Basel). 2010;10(11):10339-55. doi: 10.3390/s101110339. Epub 2010 Nov 17. Sensors (Basel). 2010. PMID: 22163473 Free PMC article.
-
Nanoscale Nonlinear dynamic characterization of the neuron-electrode junction.J Comput Theor Nanosci. 2008 Nov 1;5(11):2164-2169. doi: 10.1166/jctn.2008.1114. J Comput Theor Nanosci. 2008. PMID: 20204183 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources