Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Apr;81(4):973-83.
doi: 10.2527/2003.814973x.

Slow fiber cluster pattern in pig longissimus thoracis muscle: implications for myogenesis

Affiliations

Slow fiber cluster pattern in pig longissimus thoracis muscle: implications for myogenesis

S Fonseca et al. J Anim Sci. 2003 Apr.

Abstract

Recent evidence implicates fiber type proportions as playing a role in meat eating quality, and in pigs it has been suggested that the slow oxidative fibers contribute to both juiciness and tenderness. The fiber distribution in pigs is different from that found in most other species, in which the various types of skeletal muscle fiber are distributed in a "checkerboard" pattern, because in pigs the slow oxidative fibers have a clustered distribution. The initial processes leading to fiber clustering are likely to occur during myogenesis, but the precise mechanistic aetiology of this patterning and whether the slow oxidative fiber clusters occur in a random or ordered fashion is unknown. In the present study longissimus thoracis muscle from Large White crossbred pigs was sampled at the 10th rib, 48 h postmortem. Transverse cryo-sections were cut and histochemically stained to allow the identification of the main muscle fiber types: slow oxidative, fast glycolytic, and fast oxidative glycolytic. Images of the sections were captured and analyzed using point processes and Voronoi Tesselations to examine the randomness and spatial distribution of the clusters of slow oxidative fibers found in pig longissimus thoracis muscle. The results showed that an assumption of complete spatial randomness can be rejected and that a mathematical model incorporating a minimum distance of 1.7 to 2.0 microm between cluster centers produced fiber patterns similar to those observed in the original transverse sections of the muscle. In addition, if it assumed that the central fiber in each cluster is derived from primary myoblast progenitors, these results suggest that there may be some degree of repulsion between the primary fibers during the initial stages of cluster formation. The mechanistic basis of such repulsion is not clear, but it is speculated that secreted factors, such as sonic hedgehog or myostatin may play a role.

PubMed Disclaimer

Publication types

LinkOut - more resources