Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jun 23;461(2):174-86.
doi: 10.1002/cne.10692.

Chronic nerve compression induces concurrent apoptosis and proliferation of Schwann cells

Affiliations

Chronic nerve compression induces concurrent apoptosis and proliferation of Schwann cells

Ranjan Gupta et al. J Comp Neurol. .

Abstract

Chronic nerve compression (CNC), as in carpal tunnel syndrome, is a common cause of peripheral nerve dysfunction in humans. Previous studies using animal models have demonstrated progressive demyelination and a slowing of nerve conduction velocity. To characterize the Schwann cell response to CNC, we evaluated total Schwann cell number, apoptosis, and proliferation in an animal model of CNC. Design-based stereologic techniques revealed a striking transient increase in Schwann cell number following CNC. Schwann cell number increased sixfold relative to the normal nerve at the site of compression at 1 month and then slowly declined toward control levels. Nevertheless, assays of apoptosis (TUNEL and an antipoly-ADP-ribose polymerase labeling assays) revealed extensive Schwann cell apoptosis at 2 weeks postcompression, which is during the time when Schwann cell number was increasing. Electron microscopic analysis confirmed that these dramatic changes in Schwann cells occurred in the absence of axon degeneration and axonal swelling and before there were any detectable alterations in nerve conduction velocity. Counts of bromodeoxyuridine-labeled Schwann cells revealed that proliferation occurred concurrently with ongoing apoptosis. To define further the possible mitogenic properties of mechanical stimuli on Schwann cells, we used an in-vitro model to deliver shear stress in the form of laminar fluid flow to pure populations of Schwann cells and confirmed that mechanical stimuli induce Schwann cell proliferation. Our findings indicate that chronic nerve compression induces Schwann cell turnover with minimal axonal injury and support the idea that mechanical stimuli have a direct mitogenic effect on Schwann cells.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources