Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 May 1;63(9):2300-5.

PTEN decreases in vivo vascularization of experimental gliomas in spite of proangiogenic stimuli

Affiliations
  • PMID: 12727853

PTEN decreases in vivo vascularization of experimental gliomas in spite of proangiogenic stimuli

Tatsuya Abe et al. Cancer Res. .

Abstract

Approximately 30-40% of malignant glial tumors exhibit mutations in the tumor suppressor gene, PTEN/MMAC. Additionally, these tumors are associated with (a) mutations in epidermal growth factor receptor (EGFR), leading to a pro-oncogenic constitutive activation, as well as amplification of its gene, and/or (b) mutations in p53, disrupting normal cellular homeostatic processes. Whereas PTEN/MMAC has been shown to possess antiangiogenic action, constitutively active EGFR or p53 gene defects have been associated with proangiogenic action. In this article, we asked if PTEN/MMAC gene transfer into human glioma cells that possess inactivating mutations of the PTEN/MMAC gene but also express either constitutively active EGFR (U87DeltaEGFR cells) or possess an inactivating mutation of p53 (U251 cells) still display inhibited angiogenesis in orthotopic and ectopic models of gliomas. Human glioma xenografts treated with PTEN/MMAC gene transfer exhibited significantly decreased vascularity both in an orthotopic and in an ectopic model. Taken in combination, these results provide strong evidence of PTEN/MMAC's role in regulating glioma angiogenesis even in the presence of strong proangiogenic signals provided by constitutive EGFR activation or p53 inactivation.

PubMed Disclaimer

Publication types

MeSH terms

Grants and funding