Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 May-Jul;82(1-3):229-41.
doi: 10.1016/s0079-6107(03)00023-3.

Sarcomere length changes in a 3D mathematical model of the pig ventricles

Affiliations
Free article
Review

Sarcomere length changes in a 3D mathematical model of the pig ventricles

Carey Stevens et al. Prog Biophys Mol Biol. 2003 May-Jul.
Free article

Abstract

Measurements of the geometry and fibrous-sheet structure of the left and right ventricles of the pig heart are fitted with a finite element model. Mechanical changes during the heart cycle are computed by solving the equations of motion under specified ventricular boundary conditions and using experimentally defined constitutive laws for the active and passive material properties of myocardial tissue. The resulting patterns of deformation, such as axial torsion and changes in wall thickness and base-apex length, are consistent with experimental observations. The model can therefore be used to predict sarcomere length changes and other strain patterns throughout the myocardium and throughout the cardiac cycle. Here we present sarcomere length changes at a limited number of material points within the wall. Sarcomere length typically varies by 10% above and below the unloaded length; although under the boundary conditions imposed in the current model the midwall circumferentially oriented sarcomere lengths increased by up to 20% at end diastole. We provide web-access details for a downloadable software program designed to provide more extensive information on mechanical deformation, such as the principal strains and muscle fibre cross-sectional area changes during the cardiac cycle.

PubMed Disclaimer

LinkOut - more resources