Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Apr;375(8):1186-92.
doi: 10.1007/s00216-003-1755-y. Epub 2003 Feb 28.

A novel 1,10-phenanthroline-sensitive membrane sensor for potentiometric determination of Hg(II) and Cu(II) cations

Affiliations

A novel 1,10-phenanthroline-sensitive membrane sensor for potentiometric determination of Hg(II) and Cu(II) cations

Sayed A M Marzouk et al. Anal Bioanal Chem. 2003 Apr.

Abstract

Preparation, characterization, and applications of a 1,10-phenanthrolinium cation (phenH(+))-sensitive potentiometric sensor are described. The sensor incorporates a liquid polymeric membrane consisting of phenH-tetraphenylborate, nitrophenyloctyl ether, and poly(vinyl chloride) as ion exchanger, plasticizer, and polymeric support, respectively. The sensor exhibits a fast and Nernstian response to phenH(+) over the concentration range of 6 x 10(-6)-2 x 10(-4) M with a monovalent cationic slope of 58.0+/-0.5 mV/log[phenH(+)] in acetate buffer of pH 4.2. The sensor is successfully applied to the monitoring of the potentiometric titration of Hg(II) and Cu(II) ions with phen solution in the presence of citrate and acetate buffers of pH 4.2, respectively. Sharp inflection breaks (90-180 mV) at 1:1 (metal:phen reaction) are obtained in the presence of chloride and thiocyanate background. This stoichiometry is explained by the formation of insoluble [HgCl(2)(phen)], [Hg(SCN)(2)(phen)], and [Cu(SCN)(2)(phen)] complexes. Optimization of each titration and the effect of foreign ions are evaluated. The method offers the advantages of adequate sensitivity, accuracy, and selectivity for the determination of mercury and copper in pharmaceutical, rock, and tea samples. The results are in good agreement with those obtained using the standard atomic absorption spectrometric and United States Pharmacopeial methods.

PubMed Disclaimer

LinkOut - more resources