Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jun;284(6):C1525-30.
doi: 10.1152/ajpcell.00480.2002.

DMT1, a physiologically relevant apical Cu1+ transporter of intestinal cells

Affiliations
Free article

DMT1, a physiologically relevant apical Cu1+ transporter of intestinal cells

Miguel Arredondo et al. Am J Physiol Cell Physiol. 2003 Jun.
Free article

Abstract

Despite important advances in the understanding of copper secretion and excretion, the molecular components of intestinal copper absorption remain a mystery. DMT1, also known as Nramp2 and DCT1, is the transporter responsible for intestinal iron uptake. Electrophysiological evidence suggests that DMT1 can also be a copper transporter. Thus we examined the potential role of DMT1 as a copper transporter in intestinal Caco-2 cells. Treatment of cells with a DMT1 antisense oligonucleotide resulted in 80 and 48% inhibition of iron and copper uptake, respectively. Cells incorporated considerable amounts of copper as Cu(1+), whereas Cu(2+) transport was about 10-fold lower. Cu(1+) inhibited apical Fe(2+) transport. Fe(2+), but not Fe(3+), effectively inhibited Cu(1+) uptake. The iron content of the cells influenced both copper and iron uptake. Cells with low iron content transported fourfold more iron and threefold more copper than cells with high iron content. These results demonstrate that DMT1 is a physiologically relevant Cu(1+) transporter in intestinal cells, indicating that intestinal absorption of copper and iron are intertwined.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources