Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jul 11;278(28):25825-31.
doi: 10.1074/jbc.M302126200. Epub 2003 May 6.

Reconstitution of recombinant uncoupling proteins: UCP1, -2, and -3 have similar affinities for ATP and are unaffected by coenzyme Q10

Affiliations
Free article

Reconstitution of recombinant uncoupling proteins: UCP1, -2, and -3 have similar affinities for ATP and are unaffected by coenzyme Q10

Martin Jaburek et al. J Biol Chem. .
Free article

Abstract

The successful development of recombinant expression and reconstitution protocols has enabled a detailed study of the transport properties and regulation of the uncoupling proteins (UCP). We optimized conditions of isolation and refolding of bacterially expressed uncoupling proteins and reexamined the transport properties and regulation of bacterially expressed UCP1, -2, and -3 reconstituted in liposomes. We show for the first time that ATP inhibits UCP1, -2, and -3 with similar affinities. The Ki values for ATP inhibition were 50 microm (UCP1), 70 microm (UCP2), and 120 microm (UCP3) at pH 7.2. These affinities for ATP are similar to those obtained with native UCP1 isolated from brown adipose tissue mitochondria (Ki = 65 microm at pH 7.2). The Vmax values for proton transport were also similar among the UCPs, ranging from 8 to 20 micromol.min(-1).mg(-1), depending on experimental conditions. We also examined the effect of coenzyme Q on fatty acid-catalyzed proton flux in liposomes containing recombinant UCP1, -2, and -3. We found that coenzyme Q had no effect on the fatty acid-dependent proton transport catalyzed by any of the UCPs nor did it affect nucleotide regulation of the UCPs. We conclude that coenzyme Q is not a cofactor of UCP-mediated proton transport.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources