Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jul;180(1):1-10.
doi: 10.1007/s00203-003-0547-2. Epub 2003 May 9.

Mercury pretreatment selects an enhanced cadmium-accumulating phenotype in Euglena gracilis

Affiliations

Mercury pretreatment selects an enhanced cadmium-accumulating phenotype in Euglena gracilis

César Avilés et al. Arch Microbiol. 2003 Jul.

Abstract

Pre-treatment of heterotrophic cultures of Euglena gracilis with 1.5 microM HgCl(2) for at least 60 generations resulted in a cell population that showed both increased resistance to Cd(2+) and ability to accumulate it, when compared to non-Hg(2+)-pretreated Euglena. These Hg(2+)-enhanced capacities were evident in cells cultured in the dark in a medium with lactate, but not in cells cultured with glutamate plus malate. After culturing with 0.1 mM CdCl(2) through three consecutive transfers, the mercury-pretreated cells still grew and maintained high levels of glutathione-related metabolites, while the non-Hg(2+)-pretreated cells died. Cultures of Hg(2+)-pretreated cells, after transfer to media with or without cadmium, did not alter either their enhanced Cd(2+) accumulation or their increased production of glutathione-related metabolites. These observations suggested that the Hg(2+)-pretreated population underwent a permanent change that improved its Cd(2+) resistance. Several factors that contributed to the improved capacities included: (a) higher cellular malate, cysteine and glutathione levels induced by Hg(2+) before and after Cd(2+) exposure; and (b) increased storage of Cd(2+) in mitochondria along with increased intramitochondrial citrate, cysteine, and glutathione levels. These characteristics suggested that this Cd(2+) hyper-accumulating strain of E. gracilis might be a suitable candidate for Cd(2+)-bioremediation of polluted water systems.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources