Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Apr;9(2):255-67.
doi: 10.1089/107632703764664729.

Microfluidic patterning of cells in extracellular matrix biopolymers: effects of channel size, cell type, and matrix composition on pattern integrity

Affiliations

Microfluidic patterning of cells in extracellular matrix biopolymers: effects of channel size, cell type, and matrix composition on pattern integrity

Wei Tan et al. Tissue Eng. 2003 Apr.

Abstract

The organization of cells within an extracellular matrix is critical to promote appropriate cellular interactions and tissue function in vivo. The ability to design and create biologically relevant cellular arrangements via microfluidic patterning on surfaces provides new capabilities for tissue engineering and biomimetics. The purpose of this article is to describe techniques using microfluidic patterning of three-dimensional biopolymer matrices to improve cellular pattern integrity and to provide microscale control over cellular microenvironments. Results demonstrated that the incorporation of extracellular matrix biopolymers in cell microfluidic patterning results in a more stable pattern of adherent human endothelial cells than patterning without matrix components after several days in vitro. This may be important for carrying out long-term biological experiments and tissue engineering in vitro. Moreover, chemical components in the patterned biopolymer matrices, such as collagen, chitosan, and fibronectin, influenced the ability of the matrices to control cell migration and pattern stability over time. Thus, microfluidic patterning of cells in extracellular matrix biopolymers was shown to be useful in patterning multiple cell types in well-defined three-dimensional geometries.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources