Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 May;123(5):1647-54.
doi: 10.1378/chest.123.5.1647.

Continuous tepid blood cardioplegia can preserve coronary endothelium and ameliorate the occurrence of cardiomyocyte apoptosis

Affiliations

Continuous tepid blood cardioplegia can preserve coronary endothelium and ameliorate the occurrence of cardiomyocyte apoptosis

Chi-Hsiao Yeh et al. Chest. 2003 May.

Abstract

Objective: In modern cardiac surgery, crystalloid or blood cardioplegic solutions have been used widely for myocardial protection; however, ischemia does occur during protection with intermittent infusion of cold crystalloid or blood cardioplegic solutions. The present study was designed to evaluate the effect of different cardioplegic methods on myocardial apoptosis and coronary endothelial injury after global ischemia, cardiopulmonary bypass (CPB), and reperfusion in anesthetized open-chest dogs.

Methods: The dogs were classified into five groups to identify the injury of myocardium and coronary endothelium: group 1, normothermic CPB without cardiac arrest; group 2, hypothermic CPB with continuous tepid blood cardioplegia, and with cardiac arrest; group 3, hypothermic CPB with intermittent cold blood cardioplegia, and with cardiac arrest; group 4, hypothermic CPB with intermittent cold crystalloid cardioplegia, and with cardiac arrest; and group 5, sham-operated control group. During CPB, cardiac arrest was achieved with different cardioplegia solutions for 60 min, followed by reperfusion for 4 h before the myocardium and coronary arteries were harvested. Coronary arteries were harvested immediately and analyzed by scanning electron microscopy. Cardiomyocytic apoptosis was detected using terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling, Western blot, and DNA ladder methods.

Results: Regardless of the detection method used, significantly higher percentages of apoptotic cardiomyocytes were found in group 3 and group 4 than in other groups. Expression of caspase-3 correlated with increased apoptosis. Scanning electron microscopy revealed severe endothelial injury of coronary arteries in group 3 and group 4.

Conclusion: These results point to an important explanation for the difference in cardiac recovery after hypothermic ischemia and arrest with various cardioplegic solutions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances