Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jul 25;278(30):28060-6.
doi: 10.1074/jbc.M302328200. Epub 2003 May 8.

Structure-based analysis of high pressure adaptation of alpha-actin

Affiliations
Free article

Structure-based analysis of high pressure adaptation of alpha-actin

Takami Morita. J Biol Chem. .
Free article

Abstract

Deep-sea fishes occur to depths of several thousand meters, and at these abyssal depths encounter pressures that shallower living fishes cannot tolerate. Tolerance of abyssal pressures by deep-sea fish is likely to depend in part on adaptive modifications of proteins. However, the types of structural modifications to proteins that allow function at high pressure have not been discovered. To elucidate the mechanisms of protein adaptation to high pressure, we cloned the alpha-skeletal actin cDNAs from two abyssal Coryphaenoides species, C. armatus and C. yaquinae, and identified three amino acid substitutions, V54A or L67P, Q137K, and A155S, that distinguish these abyssal actins from orthologs of alpha-actin from non-abyssal Coryphaenoides. These substitutions, Q137K and A155S, prevent the dissociation reactions of ATP and Ca2+ from being influenced by high pressure. In particular, the lysine residue at position 137 results in a much smaller apparent volume change in the Ca2+ dissociation reaction. The V54A or L67P substitution reduces the volume change associated with actin polymerization and has a role in maintaining the DNase I activity of actin at high pressure. Together, these results indicate that a few amino acid substitutions in key functional positions can adaptively alter the pressure sensitivity of a protein.

PubMed Disclaimer

Similar articles

Cited by

Associated data

LinkOut - more resources